Update code.txt
Browse files
code.txt
CHANGED
@@ -57,3 +57,35 @@ def main():
|
|
57 |
|
58 |
if __name__ == "__main__":
|
59 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
if __name__ == "__main__":
|
59 |
main()
|
60 |
+
|
61 |
+
|
62 |
+
import numpy as np
|
63 |
+
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score
|
64 |
+
|
65 |
+
# Assuming you have true labels and predicted labels
|
66 |
+
y_true = [0, 1, 2, 1, 0, 1, 2, 2, 0] # Replace with your true labels
|
67 |
+
y_pred = [0, 0, 2, 1, 0, 1, 2, 1, 0] # Replace with your predicted labels
|
68 |
+
|
69 |
+
# Calculate the confusion matrix
|
70 |
+
conf_matrix = confusion_matrix(y_true, y_pred)
|
71 |
+
|
72 |
+
# Print the confusion matrix
|
73 |
+
print("Confusion Matrix:")
|
74 |
+
print(conf_matrix)
|
75 |
+
|
76 |
+
# Calculate precision, recall, f1-score, and accuracy for each label
|
77 |
+
precision = precision_score(y_true, y_pred, average=None)
|
78 |
+
recall = recall_score(y_true, y_pred, average=None)
|
79 |
+
f1 = f1_score(y_true, y_pred, average=None)
|
80 |
+
accuracy = accuracy_score(y_true, y_pred)
|
81 |
+
|
82 |
+
# Print precision, recall, f1-score for each label
|
83 |
+
for i in range(len(precision)):
|
84 |
+
print(f"Label {i}:")
|
85 |
+
print(f" Precision: {precision[i]:.4f}")
|
86 |
+
print(f" Recall: {recall[i]:.4f}")
|
87 |
+
print(f" F1-Score: {f1[i]:.4f}")
|
88 |
+
print()
|
89 |
+
|
90 |
+
# Print overall accuracy
|
91 |
+
print(f"Overall Accuracy: {accuracy:.4f}")
|