Nekshay commited on
Commit
f618ddc
·
1 Parent(s): 9343854

Upload 3 files

Browse files
Files changed (3) hide show
  1. LC.pdf +0 -0
  2. requirements.txt +3 -0
  3. test_llm.py +90 -0
LC.pdf ADDED
Binary file (15.9 kB). View file
 
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ langchain==0.0.225
2
+ ctransformers==0.2.5
3
+ sentence-transformers==2.2.2
test_llm.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain import PromptTemplate
2
+ from langchain.chains import RetrievalQA
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+ from langchain.vectorstores import FAISS
5
+ from langchain.document_loaders import PyPDFLoader, DirectoryLoader
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ from langchain.document_loaders import DirectoryLoader,TextLoader
8
+ from langchain.llms import CTransformers
9
+ import sys
10
+ #**Step 1: Load the PDF File from Data Path****
11
+ # loader=DirectoryLoader('D:/Projects/Traf_LLM/data_traf/',
12
+ # glob= "LC.txt",
13
+ # loader_cls=PyPDFLoader)
14
+ pdf_file_path =r"D:\Projects\Traf_LLM\data_jsw\LC.pdf"
15
+ loader=PyPDFLoader(pdf_file_path)
16
+ documents=loader.load()
17
+
18
+
19
+ #print(documents)
20
+
21
+ #***Step 2: Split Text into Chunks***
22
+
23
+ text_splitter=RecursiveCharacterTextSplitter(
24
+ chunk_size=500,
25
+ chunk_overlap=50)
26
+
27
+
28
+ text_chunks=text_splitter.split_documents(documents)
29
+
30
+ print(len(text_chunks))
31
+ #**Step 3: Load the Embedding Model***
32
+
33
+
34
+ embeddings=HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device':'cpu'})
35
+
36
+
37
+ #**Step 4: Convert the Text Chunks into Embeddings and Create a FAISS Vector Store***
38
+ vector_store=FAISS.from_documents(text_chunks, embeddings)
39
+
40
+
41
+ ##**Step 5: Find the Top 3 Answers for the Query***
42
+
43
+ query="Who is Drawee?"
44
+ docs = vector_store.similarity_search(query)
45
+
46
+ #print(docs)
47
+ llm=CTransformers(model="D:/Projects/Traf_LLM/models/llama-2-7b-chat.ggmlv3.q4_0.bin",
48
+ model_type="llama",
49
+ config={'max_new_tokens':128,
50
+ 'temperature':0.01})
51
+
52
+
53
+ template="""Use the following pieces of information to answer the user's question.
54
+ If you dont know the answer just say you know, don't try to make up an answer.
55
+
56
+ Context:{context}
57
+ Question:{question}
58
+
59
+ Only return the helpful answer below and nothing else
60
+ Helpful answer
61
+ """
62
+
63
+ qa_prompt=PromptTemplate(template=template, input_variables=['context', 'question'])
64
+
65
+ #start=timeit.default_timer()
66
+
67
+ chain = RetrievalQA.from_chain_type(llm=llm,
68
+ chain_type='stuff',
69
+ retriever=vector_store.as_retriever(search_kwargs={'k': 2}),
70
+ return_source_documents=True,
71
+ chain_type_kwargs={'prompt': qa_prompt})
72
+
73
+ #response=chain({'query': "YOLOv7 is trained on which dataset"})
74
+
75
+ #end=timeit.default_timer()
76
+ #print(f"Here is the complete Response: {response}")
77
+
78
+ #print(f"Here is the final answer: {response['result']}")
79
+
80
+ #print(f"Time to generate response: {end-start}")
81
+
82
+ while True:
83
+ user_input=input(f"prompt:")
84
+ if query=='exit':
85
+ print('Exiting')
86
+ sys.exit()
87
+ if query=='':
88
+ continue
89
+ result=chain({'query':user_input})
90
+ print(f"Answer:{result['result']}")