Octopus V4-GGUF: Graph of language models

- Original Model - Nexa AI Website - Octopus-v4 Github - ArXiv - Domain LLM Leaderbaord

nexa-octopus

Acknowledgement:
We sincerely thank our community members, Mingyuan and Zoey, for their extraordinary contributions to this quantization effort. Please explore Octopus-v4 for our original huggingface model.

Get Started

To run the models, please download them to your local machine using either git clone or Hugging Face Hub

git clone https://huggingface.co/NexaAIDev/octopus-v4-gguf

Run with llama.cpp (Recommended)

  1. Clone and compile:
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
# Compile the source code:
make
  1. Execute the Model:

Run the following command in the terminal:

./main -m ./path/to/octopus-v4-Q4_K_M.gguf -n 256 -p "<|system|>You are a router. Below is the query from the users, please call the correct function and generate the parameters to call the function.<|end|><|user|>Tell me the result of derivative of x^3 when x is 2?<|end|><|assistant|>"

Run with Ollama

Since our models have not been uploaded to the Ollama server, please download the models and manually import them into Ollama by following these steps:

  1. Install Ollama on your local machine. You can also following the guide from Ollama GitHub repository
git clone https://github.com/ollama/ollama.git ollama
  1. Locate the local Ollama directory:
cd ollama
  1. Create a Modelfile in your directory
touch Modelfile
  1. In the Modelfile, include a FROM statement with the path to your local model, and the default parameters:
FROM ./path/to/octopus-v4-Q4_K_M.gguf
PARAMETER temperature 0
PARAMETER num_ctx 1024
PARAMETER stop <nexa_end>
  1. Use the following command to add the model to Ollama:
ollama create octopus-v4-Q4_K_M -f Modelfile
  1. Verify that the model has been successfully imported:
ollama ls
  1. Run the model
ollama run octopus-v4-Q4_K_M "<|system|>You are a router. Below is the query from the users, please call the correct function and generate the parameters to call the function.<|end|><|user|>Tell me the result of derivative of x^3 when x is 2?<|end|><|assistant|>"

Dataset and Benchmark

  • Utilized questions from MMLU to evaluate the performances.
  • Evaluated with the Ollama llm-benchmark method.

Quantized GGUF Models

Name Quant method Bits Size Respons (token/second) Use Cases
Octopus-v4.gguf 7.64 GB 27.64 extremely large
Octopus-v4-Q2_K.gguf Q2_K 2 1.42 GB 54.20 extremely not recommended, high loss
Octopus-v4-Q3_K.gguf Q3_K 3 1.96 GB 51.22 not recommended
Octopus-v4-Q3_K_S.gguf Q3_K_S 3 1.68 GB 51.78 not very recommended
Octopus-v4-Q3_K_M.gguf Q3_K_M 3 1.96 GB 50.86 not very recommended
Octopus-v4-Q3_K_L.gguf Q3_K_L 3 2.09 GB 50.05 not very recommended
Octopus-v4-Q4_0.gguf Q4_0 4 2.18 GB 65.76 good quality, recommended
Octopus-v4-Q4_1.gguf Q4_1 4 2.41 GB 69.01 slow, good quality, recommended
Octopus-v4-Q4_K.gguf Q4_K 4 2.39 GB 55.76 slow, good quality, recommended
Octopus-v4-Q4_K_S.gguf Q4_K_S 4 2.19 GB 53.98 high quality, recommended
Octopus-v4-Q4_K_M.gguf Q4_K_M 4 2.39 GB 58.39 some functions loss, not very recommended
Octopus-v4-Q5_0.gguf Q5_0 5 2.64 GB 61.98 slow, good quality
Octopus-v4-Q5_1.gguf Q5_1 5 2.87 GB 63.44 slow, good quality
Octopus-v4-Q5_K.gguf Q5_K 5 2.82 GB 58.28 moderate speed, recommended
Octopus-v4-Q5_K_S.gguf Q5_K_S 5 2.64 GB 59.95 moderate speed, recommended
Octopus-v4-Q5_K_M.gguf Q5_K_M 5 2.82 GB 53.31 fast, good quality, recommended
Octopus-v4-Q6_K.gguf Q6_K 6 3.14 GB 52.15 large, not very recommended
Octopus-v4-Q8_0.gguf Q8_0 8 4.06 GB 50.10 very large, good quality
Octopus-v4-f16.gguf f16 16 7.64 GB 30.61 extremely large

Quantized with llama.cpp

Downloads last month
396
GGUF
Model size
3.82B params
Architecture
phi3

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference API
Inference API (serverless) has been turned off for this model.

Model tree for NexaAIDev/octo-net-gguf

Base model

NexaAIDev/octo-net
Quantized
(1)
this model