Nhat Minh Nguyen commited on
Commit
f1f5d88
·
1 Parent(s): 2842873

Add fine-tuned model files

Browse files
dino-4scale_resnet50_8xb2-12e_coco.py ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ auto_scale_lr = dict(base_batch_size=16)
2
+ backend_args = None
3
+ data_root = '/kaggle/working/mmdetection/dataset/'
4
+ dataset_type = 'CocoDataset'
5
+ default_hooks = dict(
6
+ checkpoint=dict(interval=1, type='CheckpointHook'),
7
+ logger=dict(interval=50, type='LoggerHook'),
8
+ param_scheduler=dict(type='ParamSchedulerHook'),
9
+ sampler_seed=dict(type='DistSamplerSeedHook'),
10
+ timer=dict(type='IterTimerHook'),
11
+ visualization=dict(type='DetVisualizationHook'))
12
+ default_scope = 'mmdet'
13
+ env_cfg = dict(
14
+ cudnn_benchmark=False,
15
+ dist_cfg=dict(backend='nccl'),
16
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
17
+ launcher = 'none'
18
+ load_from = '/kaggle/working/mmdetection/work_dirs/dino-4scale_resnet50_8xb2-12e_coco/epoch_6.pth'
19
+ log_level = 'INFO'
20
+ log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)
21
+ max_epochs = 12
22
+ metainfo = dict(classes=[
23
+ '000_aveda_shampoo',
24
+ '001_binder_clips_median',
25
+ '002_binder_clips_small',
26
+ '003_bombik_bucket',
27
+ '004_bonne_maman_blueberry',
28
+ '005_bonne_maman_raspberry',
29
+ '006_bonne_maman_strawberry',
30
+ '007_costa_caramel',
31
+ '008_essential_oil_bergamot',
32
+ '009_garlic_toast_spread',
33
+ '010_handcream_avocado',
34
+ '011_hb_calcium',
35
+ '012_hb_grapeseed',
36
+ '013_hb_marine_collagen',
37
+ '014_hellmanns_mayonnaise',
38
+ '015_illy_blend',
39
+ '016_japanese_finger_cookies',
40
+ '017_john_west_canned_tuna',
41
+ '018_kerastase_shampoo',
42
+ '019_kiehls_facial_cream',
43
+ '020_kiihne_balsamic',
44
+ '021_kiihne_honey_mustard',
45
+ '022_lindor_matcha',
46
+ '023_lindor_salted_caramel',
47
+ '024_lush_mask',
48
+ '025_pasta_sauce_black_pepper',
49
+ '026_pasta_sauce_tomato',
50
+ '027_pepsi',
51
+ '028_portable_yogurt_machine',
52
+ '029_selfile_stick',
53
+ '030_sour_lemon_drops',
54
+ '031_sticky_notes',
55
+ '032_stridex_green',
56
+ '033_thermos_flask_cream',
57
+ '034_thermos_flask_muji',
58
+ '035_thermos_flask_sliver',
59
+ '036_tragata_olive_oil',
60
+ '037_tulip_luncheon_meat',
61
+ '038_unicharm_cotton_pad',
62
+ '039_vinda_tissue',
63
+ '040_wrigley_doublemint_gum',
64
+ '041_baseball_cap_black',
65
+ '042_baseball_cap_pink',
66
+ '043_bfe_facial_mask',
67
+ '044_corgi_doll',
68
+ '045_dinosaur_doll',
69
+ '046_geo_mocha',
70
+ '047_geo_roast_charcoal',
71
+ '048_instant_noodle_black',
72
+ '049_instant_noodle_red',
73
+ '050_nabati_cheese_wafer',
74
+ '051_truffettes',
75
+ '052_acnes_cream',
76
+ '053_aveda_conditioner',
77
+ '054_banana_milk_drink',
78
+ '055_candle_beast',
79
+ '056_china_persimmon',
80
+ '057_danisa_butter_cookies',
81
+ '058_effaclar_duo',
82
+ '059_evelom_cleanser',
83
+ '060_glasses_box_blone',
84
+ '061_handcream_iris',
85
+ '062_handcream_lavender',
86
+ '063_handcream_rosewater',
87
+ '064_handcream_summer_hill',
88
+ '065_hr_serum',
89
+ '066_japanese_chocolate',
90
+ '067_kerastase_hair_treatment',
91
+ '068_kiehls_serum',
92
+ '069_korean_beef_marinade',
93
+ '070_korean_doenjang',
94
+ '071_korean_gochujang',
95
+ '072_korean_ssamjang',
96
+ '073_loccitane_soap',
97
+ '074_marvis_toothpaste_purple',
98
+ '075_mouse_thinkpad',
99
+ '076_oatly_chocolate',
100
+ '077_oatly_original',
101
+ '078_ousa_grated_cheese',
102
+ '079_polaroid_film',
103
+ '080_skinceuticals_be',
104
+ '081_skinceuticals_cf',
105
+ '082_skinceuticals_phyto',
106
+ '083_stapler_black',
107
+ '084_stapler_blue',
108
+ '085_sunscreen_blue',
109
+ '086_tempo_pocket_tissue',
110
+ '087_thermos_flask_purple',
111
+ '088_uha_matcha',
112
+ '089_urban_decay_spray',
113
+ '090_vitaboost_multivitamin',
114
+ '091_watercolor_penbox',
115
+ '092_youthlt_bilberry_complex',
116
+ '093_daiso_mod_remover',
117
+ '094_kaneyo_kitchen_bleach',
118
+ '095_lays_chip_bag_blue',
119
+ '096_lays_chip_bag_green',
120
+ '097_lays_chip_tube_auburn',
121
+ '098_lays_chip_tube_green',
122
+ '099_mug_blue',
123
+ ])
124
+ model = dict(
125
+ as_two_stage=True,
126
+ backbone=dict(
127
+ depth=50,
128
+ frozen_stages=1,
129
+ init_cfg=dict(checkpoint='torchvision://resnet50', type='Pretrained'),
130
+ norm_cfg=dict(requires_grad=False, type='BN'),
131
+ norm_eval=True,
132
+ num_stages=4,
133
+ out_indices=(
134
+ 0,
135
+ 1,
136
+ 2,
137
+ 3,
138
+ ),
139
+ style='pytorch',
140
+ type='ResNet',
141
+ with_cp=True),
142
+ bbox_head=dict(
143
+ loss_bbox=dict(loss_weight=5.0, type='L1Loss'),
144
+ loss_cls=dict(
145
+ alpha=0.25,
146
+ gamma=2.0,
147
+ loss_weight=1.0,
148
+ type='FocalLoss',
149
+ use_sigmoid=True),
150
+ loss_iou=dict(loss_weight=2.0, type='GIoULoss'),
151
+ num_classes=100,
152
+ sync_cls_avg_factor=True,
153
+ type='DINOHead'),
154
+ data_preprocessor=dict(
155
+ bgr_to_rgb=True,
156
+ mean=[
157
+ 123.675,
158
+ 116.28,
159
+ 103.53,
160
+ ],
161
+ pad_size_divisor=1,
162
+ std=[
163
+ 58.395,
164
+ 57.12,
165
+ 57.375,
166
+ ],
167
+ type='DetDataPreprocessor'),
168
+ decoder=dict(
169
+ layer_cfg=dict(
170
+ cross_attn_cfg=dict(dropout=0.0, embed_dims=256, num_levels=4),
171
+ ffn_cfg=dict(
172
+ embed_dims=256, feedforward_channels=2048, ffn_drop=0.0),
173
+ self_attn_cfg=dict(dropout=0.0, embed_dims=256, num_heads=8)),
174
+ num_layers=6,
175
+ post_norm_cfg=None,
176
+ return_intermediate=True),
177
+ dn_cfg=dict(
178
+ box_noise_scale=1.0,
179
+ group_cfg=dict(dynamic=True, num_dn_queries=100, num_groups=None),
180
+ label_noise_scale=0.5),
181
+ encoder=dict(
182
+ layer_cfg=dict(
183
+ ffn_cfg=dict(
184
+ embed_dims=256, feedforward_channels=2048, ffn_drop=0.0),
185
+ self_attn_cfg=dict(dropout=0.0, embed_dims=256, num_levels=4)),
186
+ num_layers=6),
187
+ neck=dict(
188
+ act_cfg=None,
189
+ in_channels=[
190
+ 256,
191
+ 512,
192
+ 1024,
193
+ 2048,
194
+ ],
195
+ kernel_size=1,
196
+ norm_cfg=dict(num_groups=32, type='GN'),
197
+ num_outs=4,
198
+ out_channels=256,
199
+ type='ChannelMapper'),
200
+ num_feature_levels=4,
201
+ num_queries=900,
202
+ positional_encoding=dict(
203
+ normalize=True, num_feats=128, offset=0.0, temperature=20),
204
+ test_cfg=dict(max_per_img=300),
205
+ train_cfg=dict(
206
+ assigner=dict(
207
+ match_costs=[
208
+ dict(type='FocalLossCost', weight=2.0),
209
+ dict(box_format='xywh', type='BBoxL1Cost', weight=5.0),
210
+ dict(iou_mode='giou', type='IoUCost', weight=2.0),
211
+ ],
212
+ type='HungarianAssigner')),
213
+ type='DINO',
214
+ with_box_refine=True)
215
+ num_levels = 4
216
+ optim_wrapper = dict(
217
+ clip_grad=dict(max_norm=0.1, norm_type=2),
218
+ optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.0001),
219
+ paramwise_cfg=dict(custom_keys=dict(backbone=dict(lr_mult=0.1))),
220
+ type='OptimWrapper')
221
+ param_scheduler = [
222
+ dict(
223
+ begin=0,
224
+ by_epoch=True,
225
+ end=12,
226
+ gamma=0.1,
227
+ milestones=[
228
+ 11,
229
+ ],
230
+ type='MultiStepLR'),
231
+ ]
232
+ resume = False
233
+ test_cfg = dict(type='TestLoop')
234
+ test_dataloader = dict(
235
+ batch_size=1,
236
+ dataset=dict(
237
+ ann_file=None,
238
+ backend_args=None,
239
+ data_prefix=dict(img=''),
240
+ data_root='/kaggle/input/insdet-test/InsDet-Test',
241
+ pipeline=[
242
+ dict(backend_args=None, type='LoadImageFromFile'),
243
+ dict(keep_ratio=True, scale=(
244
+ 1333,
245
+ 800,
246
+ ), type='Resize'),
247
+ dict(type='LoadAnnotations', with_bbox=True),
248
+ dict(
249
+ meta_keys=(
250
+ 'img_id',
251
+ 'img_path',
252
+ 'ori_shape',
253
+ 'img_shape',
254
+ 'scale_factor',
255
+ ),
256
+ type='PackDetInputs'),
257
+ ],
258
+ test_mode=True,
259
+ type='CocoDataset'),
260
+ drop_last=False,
261
+ num_workers=2,
262
+ persistent_workers=True,
263
+ sampler=dict(shuffle=False, type='DefaultSampler'))
264
+ test_evaluator = dict(
265
+ ann_file='/kaggle/working/mmdetection/dataset/annotations/val.json',
266
+ backend_args=None,
267
+ format_only=False,
268
+ metric='bbox',
269
+ type='CocoMetric')
270
+ test_pipeline = [
271
+ dict(backend_args=None, type='LoadImageFromFile'),
272
+ dict(keep_ratio=True, scale=(
273
+ 1333,
274
+ 800,
275
+ ), type='Resize'),
276
+ dict(type='LoadAnnotations', with_bbox=True),
277
+ dict(
278
+ meta_keys=(
279
+ 'img_id',
280
+ 'img_path',
281
+ 'ori_shape',
282
+ 'img_shape',
283
+ 'scale_factor',
284
+ ),
285
+ type='PackDetInputs'),
286
+ ]
287
+ train_cfg = dict(max_epochs=6, type='EpochBasedTrainLoop', val_interval=1)
288
+ train_dataloader = dict(
289
+ batch_sampler=dict(type='AspectRatioBatchSampler'),
290
+ batch_size=1,
291
+ dataset=dict(
292
+ ann_file='annotations/train.json',
293
+ backend_args=None,
294
+ data_prefix=dict(img='train/'),
295
+ data_root='/kaggle/working/mmdetection/dataset/',
296
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
297
+ metainfo=dict(classes=[
298
+ '000_aveda_shampoo',
299
+ '001_binder_clips_median',
300
+ '002_binder_clips_small',
301
+ '003_bombik_bucket',
302
+ '004_bonne_maman_blueberry',
303
+ '005_bonne_maman_raspberry',
304
+ '006_bonne_maman_strawberry',
305
+ '007_costa_caramel',
306
+ '008_essential_oil_bergamot',
307
+ '009_garlic_toast_spread',
308
+ '010_handcream_avocado',
309
+ '011_hb_calcium',
310
+ '012_hb_grapeseed',
311
+ '013_hb_marine_collagen',
312
+ '014_hellmanns_mayonnaise',
313
+ '015_illy_blend',
314
+ '016_japanese_finger_cookies',
315
+ '017_john_west_canned_tuna',
316
+ '018_kerastase_shampoo',
317
+ '019_kiehls_facial_cream',
318
+ '020_kiihne_balsamic',
319
+ '021_kiihne_honey_mustard',
320
+ '022_lindor_matcha',
321
+ '023_lindor_salted_caramel',
322
+ '024_lush_mask',
323
+ '025_pasta_sauce_black_pepper',
324
+ '026_pasta_sauce_tomato',
325
+ '027_pepsi',
326
+ '028_portable_yogurt_machine',
327
+ '029_selfile_stick',
328
+ '030_sour_lemon_drops',
329
+ '031_sticky_notes',
330
+ '032_stridex_green',
331
+ '033_thermos_flask_cream',
332
+ '034_thermos_flask_muji',
333
+ '035_thermos_flask_sliver',
334
+ '036_tragata_olive_oil',
335
+ '037_tulip_luncheon_meat',
336
+ '038_unicharm_cotton_pad',
337
+ '039_vinda_tissue',
338
+ '040_wrigley_doublemint_gum',
339
+ '041_baseball_cap_black',
340
+ '042_baseball_cap_pink',
341
+ '043_bfe_facial_mask',
342
+ '044_corgi_doll',
343
+ '045_dinosaur_doll',
344
+ '046_geo_mocha',
345
+ '047_geo_roast_charcoal',
346
+ '048_instant_noodle_black',
347
+ '049_instant_noodle_red',
348
+ '050_nabati_cheese_wafer',
349
+ '051_truffettes',
350
+ '052_acnes_cream',
351
+ '053_aveda_conditioner',
352
+ '054_banana_milk_drink',
353
+ '055_candle_beast',
354
+ '056_china_persimmon',
355
+ '057_danisa_butter_cookies',
356
+ '058_effaclar_duo',
357
+ '059_evelom_cleanser',
358
+ '060_glasses_box_blone',
359
+ '061_handcream_iris',
360
+ '062_handcream_lavender',
361
+ '063_handcream_rosewater',
362
+ '064_handcream_summer_hill',
363
+ '065_hr_serum',
364
+ '066_japanese_chocolate',
365
+ '067_kerastase_hair_treatment',
366
+ '068_kiehls_serum',
367
+ '069_korean_beef_marinade',
368
+ '070_korean_doenjang',
369
+ '071_korean_gochujang',
370
+ '072_korean_ssamjang',
371
+ '073_loccitane_soap',
372
+ '074_marvis_toothpaste_purple',
373
+ '075_mouse_thinkpad',
374
+ '076_oatly_chocolate',
375
+ '077_oatly_original',
376
+ '078_ousa_grated_cheese',
377
+ '079_polaroid_film',
378
+ '080_skinceuticals_be',
379
+ '081_skinceuticals_cf',
380
+ '082_skinceuticals_phyto',
381
+ '083_stapler_black',
382
+ '084_stapler_blue',
383
+ '085_sunscreen_blue',
384
+ '086_tempo_pocket_tissue',
385
+ '087_thermos_flask_purple',
386
+ '088_uha_matcha',
387
+ '089_urban_decay_spray',
388
+ '090_vitaboost_multivitamin',
389
+ '091_watercolor_penbox',
390
+ '092_youthlt_bilberry_complex',
391
+ '093_daiso_mod_remover',
392
+ '094_kaneyo_kitchen_bleach',
393
+ '095_lays_chip_bag_blue',
394
+ '096_lays_chip_bag_green',
395
+ '097_lays_chip_tube_auburn',
396
+ '098_lays_chip_tube_green',
397
+ '099_mug_blue',
398
+ ]),
399
+ pipeline=[
400
+ dict(backend_args=None, type='LoadImageFromFile'),
401
+ dict(type='LoadAnnotations', with_bbox=True),
402
+ dict(prob=0.5, type='RandomFlip'),
403
+ dict(
404
+ transforms=[
405
+ [
406
+ dict(
407
+ keep_ratio=True,
408
+ scales=[
409
+ (
410
+ 480,
411
+ 1333,
412
+ ),
413
+ (
414
+ 512,
415
+ 1333,
416
+ ),
417
+ (
418
+ 544,
419
+ 1333,
420
+ ),
421
+ (
422
+ 576,
423
+ 1333,
424
+ ),
425
+ (
426
+ 608,
427
+ 1333,
428
+ ),
429
+ (
430
+ 640,
431
+ 1333,
432
+ ),
433
+ (
434
+ 672,
435
+ 1333,
436
+ ),
437
+ (
438
+ 704,
439
+ 1333,
440
+ ),
441
+ (
442
+ 736,
443
+ 1333,
444
+ ),
445
+ (
446
+ 768,
447
+ 1333,
448
+ ),
449
+ (
450
+ 800,
451
+ 1333,
452
+ ),
453
+ ],
454
+ type='RandomChoiceResize'),
455
+ ],
456
+ [
457
+ dict(
458
+ keep_ratio=True,
459
+ scales=[
460
+ (
461
+ 400,
462
+ 4200,
463
+ ),
464
+ (
465
+ 500,
466
+ 4200,
467
+ ),
468
+ (
469
+ 600,
470
+ 4200,
471
+ ),
472
+ ],
473
+ type='RandomChoiceResize'),
474
+ dict(
475
+ allow_negative_crop=True,
476
+ crop_size=(
477
+ 384,
478
+ 600,
479
+ ),
480
+ crop_type='absolute_range',
481
+ type='RandomCrop'),
482
+ dict(
483
+ keep_ratio=True,
484
+ scales=[
485
+ (
486
+ 480,
487
+ 1333,
488
+ ),
489
+ (
490
+ 512,
491
+ 1333,
492
+ ),
493
+ (
494
+ 544,
495
+ 1333,
496
+ ),
497
+ (
498
+ 576,
499
+ 1333,
500
+ ),
501
+ (
502
+ 608,
503
+ 1333,
504
+ ),
505
+ (
506
+ 640,
507
+ 1333,
508
+ ),
509
+ (
510
+ 672,
511
+ 1333,
512
+ ),
513
+ (
514
+ 704,
515
+ 1333,
516
+ ),
517
+ (
518
+ 736,
519
+ 1333,
520
+ ),
521
+ (
522
+ 768,
523
+ 1333,
524
+ ),
525
+ (
526
+ 800,
527
+ 1333,
528
+ ),
529
+ ],
530
+ type='RandomChoiceResize'),
531
+ ],
532
+ ],
533
+ type='RandomChoice'),
534
+ dict(type='PackDetInputs'),
535
+ ],
536
+ type='CocoDataset'),
537
+ num_workers=1,
538
+ persistent_workers=True,
539
+ sampler=dict(shuffle=True, type='DefaultSampler'))
540
+ train_pipeline = [
541
+ dict(backend_args=None, type='LoadImageFromFile'),
542
+ dict(type='LoadAnnotations', with_bbox=True),
543
+ dict(prob=0.5, type='RandomFlip'),
544
+ dict(
545
+ transforms=[
546
+ [
547
+ dict(
548
+ keep_ratio=True,
549
+ scales=[
550
+ (
551
+ 480,
552
+ 1333,
553
+ ),
554
+ (
555
+ 512,
556
+ 1333,
557
+ ),
558
+ (
559
+ 544,
560
+ 1333,
561
+ ),
562
+ (
563
+ 576,
564
+ 1333,
565
+ ),
566
+ (
567
+ 608,
568
+ 1333,
569
+ ),
570
+ (
571
+ 640,
572
+ 1333,
573
+ ),
574
+ (
575
+ 672,
576
+ 1333,
577
+ ),
578
+ (
579
+ 704,
580
+ 1333,
581
+ ),
582
+ (
583
+ 736,
584
+ 1333,
585
+ ),
586
+ (
587
+ 768,
588
+ 1333,
589
+ ),
590
+ (
591
+ 800,
592
+ 1333,
593
+ ),
594
+ ],
595
+ type='RandomChoiceResize'),
596
+ ],
597
+ [
598
+ dict(
599
+ keep_ratio=True,
600
+ scales=[
601
+ (
602
+ 400,
603
+ 4200,
604
+ ),
605
+ (
606
+ 500,
607
+ 4200,
608
+ ),
609
+ (
610
+ 600,
611
+ 4200,
612
+ ),
613
+ ],
614
+ type='RandomChoiceResize'),
615
+ dict(
616
+ allow_negative_crop=True,
617
+ crop_size=(
618
+ 384,
619
+ 600,
620
+ ),
621
+ crop_type='absolute_range',
622
+ type='RandomCrop'),
623
+ dict(
624
+ keep_ratio=True,
625
+ scales=[
626
+ (
627
+ 480,
628
+ 1333,
629
+ ),
630
+ (
631
+ 512,
632
+ 1333,
633
+ ),
634
+ (
635
+ 544,
636
+ 1333,
637
+ ),
638
+ (
639
+ 576,
640
+ 1333,
641
+ ),
642
+ (
643
+ 608,
644
+ 1333,
645
+ ),
646
+ (
647
+ 640,
648
+ 1333,
649
+ ),
650
+ (
651
+ 672,
652
+ 1333,
653
+ ),
654
+ (
655
+ 704,
656
+ 1333,
657
+ ),
658
+ (
659
+ 736,
660
+ 1333,
661
+ ),
662
+ (
663
+ 768,
664
+ 1333,
665
+ ),
666
+ (
667
+ 800,
668
+ 1333,
669
+ ),
670
+ ],
671
+ type='RandomChoiceResize'),
672
+ ],
673
+ ],
674
+ type='RandomChoice'),
675
+ dict(type='PackDetInputs'),
676
+ ]
677
+ val_cfg = dict(type='ValLoop')
678
+ val_dataloader = dict(
679
+ batch_size=1,
680
+ dataset=dict(
681
+ ann_file='annotations/instances_val2017.json',
682
+ backend_args=None,
683
+ data_prefix=dict(img='val2017/'),
684
+ data_root='data/coco/',
685
+ pipeline=[
686
+ dict(backend_args=None, type='LoadImageFromFile'),
687
+ dict(keep_ratio=True, scale=(
688
+ 1333,
689
+ 800,
690
+ ), type='Resize'),
691
+ dict(type='LoadAnnotations', with_bbox=True),
692
+ dict(
693
+ meta_keys=(
694
+ 'img_id',
695
+ 'img_path',
696
+ 'ori_shape',
697
+ 'img_shape',
698
+ 'scale_factor',
699
+ ),
700
+ type='PackDetInputs'),
701
+ ],
702
+ test_mode=True,
703
+ type='CocoDataset'),
704
+ drop_last=False,
705
+ num_workers=2,
706
+ persistent_workers=True,
707
+ sampler=dict(shuffle=False, type='DefaultSampler'))
708
+ val_evaluator = dict(
709
+ ann_file='/kaggle/working/mmdetection/dataset/annotations/val.json',
710
+ backend_args=None,
711
+ format_only=False,
712
+ metric='bbox',
713
+ type='CocoMetric')
714
+ vis_backends = [
715
+ dict(type='LocalVisBackend'),
716
+ ]
717
+ visualizer = dict(
718
+ name='visualizer',
719
+ type='DetLocalVisualizer',
720
+ vis_backends=[
721
+ dict(type='LocalVisBackend'),
722
+ ])
723
+ work_dir = './work_dirs/dino-4scale_resnet50_8xb2-12e_coco'
epoch_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6941313283f8661beca8e66eb0c6da1b6cebf57566490b210788f793f9eb626
3
+ size 537956199
last_checkpoint ADDED
@@ -0,0 +1 @@
 
 
1
+ /kaggle/working/mmdetection/work_dirs/dino-4scale_resnet50_8xb2-12e_coco/epoch_6.pth