Nhat Minh Nguyen
commited on
Commit
·
f1f5d88
1
Parent(s):
2842873
Add fine-tuned model files
Browse files- dino-4scale_resnet50_8xb2-12e_coco.py +723 -0
- epoch_6.pth +3 -0
- last_checkpoint +1 -0
dino-4scale_resnet50_8xb2-12e_coco.py
ADDED
@@ -0,0 +1,723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto_scale_lr = dict(base_batch_size=16)
|
2 |
+
backend_args = None
|
3 |
+
data_root = '/kaggle/working/mmdetection/dataset/'
|
4 |
+
dataset_type = 'CocoDataset'
|
5 |
+
default_hooks = dict(
|
6 |
+
checkpoint=dict(interval=1, type='CheckpointHook'),
|
7 |
+
logger=dict(interval=50, type='LoggerHook'),
|
8 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
9 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
10 |
+
timer=dict(type='IterTimerHook'),
|
11 |
+
visualization=dict(type='DetVisualizationHook'))
|
12 |
+
default_scope = 'mmdet'
|
13 |
+
env_cfg = dict(
|
14 |
+
cudnn_benchmark=False,
|
15 |
+
dist_cfg=dict(backend='nccl'),
|
16 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
17 |
+
launcher = 'none'
|
18 |
+
load_from = '/kaggle/working/mmdetection/work_dirs/dino-4scale_resnet50_8xb2-12e_coco/epoch_6.pth'
|
19 |
+
log_level = 'INFO'
|
20 |
+
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)
|
21 |
+
max_epochs = 12
|
22 |
+
metainfo = dict(classes=[
|
23 |
+
'000_aveda_shampoo',
|
24 |
+
'001_binder_clips_median',
|
25 |
+
'002_binder_clips_small',
|
26 |
+
'003_bombik_bucket',
|
27 |
+
'004_bonne_maman_blueberry',
|
28 |
+
'005_bonne_maman_raspberry',
|
29 |
+
'006_bonne_maman_strawberry',
|
30 |
+
'007_costa_caramel',
|
31 |
+
'008_essential_oil_bergamot',
|
32 |
+
'009_garlic_toast_spread',
|
33 |
+
'010_handcream_avocado',
|
34 |
+
'011_hb_calcium',
|
35 |
+
'012_hb_grapeseed',
|
36 |
+
'013_hb_marine_collagen',
|
37 |
+
'014_hellmanns_mayonnaise',
|
38 |
+
'015_illy_blend',
|
39 |
+
'016_japanese_finger_cookies',
|
40 |
+
'017_john_west_canned_tuna',
|
41 |
+
'018_kerastase_shampoo',
|
42 |
+
'019_kiehls_facial_cream',
|
43 |
+
'020_kiihne_balsamic',
|
44 |
+
'021_kiihne_honey_mustard',
|
45 |
+
'022_lindor_matcha',
|
46 |
+
'023_lindor_salted_caramel',
|
47 |
+
'024_lush_mask',
|
48 |
+
'025_pasta_sauce_black_pepper',
|
49 |
+
'026_pasta_sauce_tomato',
|
50 |
+
'027_pepsi',
|
51 |
+
'028_portable_yogurt_machine',
|
52 |
+
'029_selfile_stick',
|
53 |
+
'030_sour_lemon_drops',
|
54 |
+
'031_sticky_notes',
|
55 |
+
'032_stridex_green',
|
56 |
+
'033_thermos_flask_cream',
|
57 |
+
'034_thermos_flask_muji',
|
58 |
+
'035_thermos_flask_sliver',
|
59 |
+
'036_tragata_olive_oil',
|
60 |
+
'037_tulip_luncheon_meat',
|
61 |
+
'038_unicharm_cotton_pad',
|
62 |
+
'039_vinda_tissue',
|
63 |
+
'040_wrigley_doublemint_gum',
|
64 |
+
'041_baseball_cap_black',
|
65 |
+
'042_baseball_cap_pink',
|
66 |
+
'043_bfe_facial_mask',
|
67 |
+
'044_corgi_doll',
|
68 |
+
'045_dinosaur_doll',
|
69 |
+
'046_geo_mocha',
|
70 |
+
'047_geo_roast_charcoal',
|
71 |
+
'048_instant_noodle_black',
|
72 |
+
'049_instant_noodle_red',
|
73 |
+
'050_nabati_cheese_wafer',
|
74 |
+
'051_truffettes',
|
75 |
+
'052_acnes_cream',
|
76 |
+
'053_aveda_conditioner',
|
77 |
+
'054_banana_milk_drink',
|
78 |
+
'055_candle_beast',
|
79 |
+
'056_china_persimmon',
|
80 |
+
'057_danisa_butter_cookies',
|
81 |
+
'058_effaclar_duo',
|
82 |
+
'059_evelom_cleanser',
|
83 |
+
'060_glasses_box_blone',
|
84 |
+
'061_handcream_iris',
|
85 |
+
'062_handcream_lavender',
|
86 |
+
'063_handcream_rosewater',
|
87 |
+
'064_handcream_summer_hill',
|
88 |
+
'065_hr_serum',
|
89 |
+
'066_japanese_chocolate',
|
90 |
+
'067_kerastase_hair_treatment',
|
91 |
+
'068_kiehls_serum',
|
92 |
+
'069_korean_beef_marinade',
|
93 |
+
'070_korean_doenjang',
|
94 |
+
'071_korean_gochujang',
|
95 |
+
'072_korean_ssamjang',
|
96 |
+
'073_loccitane_soap',
|
97 |
+
'074_marvis_toothpaste_purple',
|
98 |
+
'075_mouse_thinkpad',
|
99 |
+
'076_oatly_chocolate',
|
100 |
+
'077_oatly_original',
|
101 |
+
'078_ousa_grated_cheese',
|
102 |
+
'079_polaroid_film',
|
103 |
+
'080_skinceuticals_be',
|
104 |
+
'081_skinceuticals_cf',
|
105 |
+
'082_skinceuticals_phyto',
|
106 |
+
'083_stapler_black',
|
107 |
+
'084_stapler_blue',
|
108 |
+
'085_sunscreen_blue',
|
109 |
+
'086_tempo_pocket_tissue',
|
110 |
+
'087_thermos_flask_purple',
|
111 |
+
'088_uha_matcha',
|
112 |
+
'089_urban_decay_spray',
|
113 |
+
'090_vitaboost_multivitamin',
|
114 |
+
'091_watercolor_penbox',
|
115 |
+
'092_youthlt_bilberry_complex',
|
116 |
+
'093_daiso_mod_remover',
|
117 |
+
'094_kaneyo_kitchen_bleach',
|
118 |
+
'095_lays_chip_bag_blue',
|
119 |
+
'096_lays_chip_bag_green',
|
120 |
+
'097_lays_chip_tube_auburn',
|
121 |
+
'098_lays_chip_tube_green',
|
122 |
+
'099_mug_blue',
|
123 |
+
])
|
124 |
+
model = dict(
|
125 |
+
as_two_stage=True,
|
126 |
+
backbone=dict(
|
127 |
+
depth=50,
|
128 |
+
frozen_stages=1,
|
129 |
+
init_cfg=dict(checkpoint='torchvision://resnet50', type='Pretrained'),
|
130 |
+
norm_cfg=dict(requires_grad=False, type='BN'),
|
131 |
+
norm_eval=True,
|
132 |
+
num_stages=4,
|
133 |
+
out_indices=(
|
134 |
+
0,
|
135 |
+
1,
|
136 |
+
2,
|
137 |
+
3,
|
138 |
+
),
|
139 |
+
style='pytorch',
|
140 |
+
type='ResNet',
|
141 |
+
with_cp=True),
|
142 |
+
bbox_head=dict(
|
143 |
+
loss_bbox=dict(loss_weight=5.0, type='L1Loss'),
|
144 |
+
loss_cls=dict(
|
145 |
+
alpha=0.25,
|
146 |
+
gamma=2.0,
|
147 |
+
loss_weight=1.0,
|
148 |
+
type='FocalLoss',
|
149 |
+
use_sigmoid=True),
|
150 |
+
loss_iou=dict(loss_weight=2.0, type='GIoULoss'),
|
151 |
+
num_classes=100,
|
152 |
+
sync_cls_avg_factor=True,
|
153 |
+
type='DINOHead'),
|
154 |
+
data_preprocessor=dict(
|
155 |
+
bgr_to_rgb=True,
|
156 |
+
mean=[
|
157 |
+
123.675,
|
158 |
+
116.28,
|
159 |
+
103.53,
|
160 |
+
],
|
161 |
+
pad_size_divisor=1,
|
162 |
+
std=[
|
163 |
+
58.395,
|
164 |
+
57.12,
|
165 |
+
57.375,
|
166 |
+
],
|
167 |
+
type='DetDataPreprocessor'),
|
168 |
+
decoder=dict(
|
169 |
+
layer_cfg=dict(
|
170 |
+
cross_attn_cfg=dict(dropout=0.0, embed_dims=256, num_levels=4),
|
171 |
+
ffn_cfg=dict(
|
172 |
+
embed_dims=256, feedforward_channels=2048, ffn_drop=0.0),
|
173 |
+
self_attn_cfg=dict(dropout=0.0, embed_dims=256, num_heads=8)),
|
174 |
+
num_layers=6,
|
175 |
+
post_norm_cfg=None,
|
176 |
+
return_intermediate=True),
|
177 |
+
dn_cfg=dict(
|
178 |
+
box_noise_scale=1.0,
|
179 |
+
group_cfg=dict(dynamic=True, num_dn_queries=100, num_groups=None),
|
180 |
+
label_noise_scale=0.5),
|
181 |
+
encoder=dict(
|
182 |
+
layer_cfg=dict(
|
183 |
+
ffn_cfg=dict(
|
184 |
+
embed_dims=256, feedforward_channels=2048, ffn_drop=0.0),
|
185 |
+
self_attn_cfg=dict(dropout=0.0, embed_dims=256, num_levels=4)),
|
186 |
+
num_layers=6),
|
187 |
+
neck=dict(
|
188 |
+
act_cfg=None,
|
189 |
+
in_channels=[
|
190 |
+
256,
|
191 |
+
512,
|
192 |
+
1024,
|
193 |
+
2048,
|
194 |
+
],
|
195 |
+
kernel_size=1,
|
196 |
+
norm_cfg=dict(num_groups=32, type='GN'),
|
197 |
+
num_outs=4,
|
198 |
+
out_channels=256,
|
199 |
+
type='ChannelMapper'),
|
200 |
+
num_feature_levels=4,
|
201 |
+
num_queries=900,
|
202 |
+
positional_encoding=dict(
|
203 |
+
normalize=True, num_feats=128, offset=0.0, temperature=20),
|
204 |
+
test_cfg=dict(max_per_img=300),
|
205 |
+
train_cfg=dict(
|
206 |
+
assigner=dict(
|
207 |
+
match_costs=[
|
208 |
+
dict(type='FocalLossCost', weight=2.0),
|
209 |
+
dict(box_format='xywh', type='BBoxL1Cost', weight=5.0),
|
210 |
+
dict(iou_mode='giou', type='IoUCost', weight=2.0),
|
211 |
+
],
|
212 |
+
type='HungarianAssigner')),
|
213 |
+
type='DINO',
|
214 |
+
with_box_refine=True)
|
215 |
+
num_levels = 4
|
216 |
+
optim_wrapper = dict(
|
217 |
+
clip_grad=dict(max_norm=0.1, norm_type=2),
|
218 |
+
optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.0001),
|
219 |
+
paramwise_cfg=dict(custom_keys=dict(backbone=dict(lr_mult=0.1))),
|
220 |
+
type='OptimWrapper')
|
221 |
+
param_scheduler = [
|
222 |
+
dict(
|
223 |
+
begin=0,
|
224 |
+
by_epoch=True,
|
225 |
+
end=12,
|
226 |
+
gamma=0.1,
|
227 |
+
milestones=[
|
228 |
+
11,
|
229 |
+
],
|
230 |
+
type='MultiStepLR'),
|
231 |
+
]
|
232 |
+
resume = False
|
233 |
+
test_cfg = dict(type='TestLoop')
|
234 |
+
test_dataloader = dict(
|
235 |
+
batch_size=1,
|
236 |
+
dataset=dict(
|
237 |
+
ann_file=None,
|
238 |
+
backend_args=None,
|
239 |
+
data_prefix=dict(img=''),
|
240 |
+
data_root='/kaggle/input/insdet-test/InsDet-Test',
|
241 |
+
pipeline=[
|
242 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
243 |
+
dict(keep_ratio=True, scale=(
|
244 |
+
1333,
|
245 |
+
800,
|
246 |
+
), type='Resize'),
|
247 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
248 |
+
dict(
|
249 |
+
meta_keys=(
|
250 |
+
'img_id',
|
251 |
+
'img_path',
|
252 |
+
'ori_shape',
|
253 |
+
'img_shape',
|
254 |
+
'scale_factor',
|
255 |
+
),
|
256 |
+
type='PackDetInputs'),
|
257 |
+
],
|
258 |
+
test_mode=True,
|
259 |
+
type='CocoDataset'),
|
260 |
+
drop_last=False,
|
261 |
+
num_workers=2,
|
262 |
+
persistent_workers=True,
|
263 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
264 |
+
test_evaluator = dict(
|
265 |
+
ann_file='/kaggle/working/mmdetection/dataset/annotations/val.json',
|
266 |
+
backend_args=None,
|
267 |
+
format_only=False,
|
268 |
+
metric='bbox',
|
269 |
+
type='CocoMetric')
|
270 |
+
test_pipeline = [
|
271 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
272 |
+
dict(keep_ratio=True, scale=(
|
273 |
+
1333,
|
274 |
+
800,
|
275 |
+
), type='Resize'),
|
276 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
277 |
+
dict(
|
278 |
+
meta_keys=(
|
279 |
+
'img_id',
|
280 |
+
'img_path',
|
281 |
+
'ori_shape',
|
282 |
+
'img_shape',
|
283 |
+
'scale_factor',
|
284 |
+
),
|
285 |
+
type='PackDetInputs'),
|
286 |
+
]
|
287 |
+
train_cfg = dict(max_epochs=6, type='EpochBasedTrainLoop', val_interval=1)
|
288 |
+
train_dataloader = dict(
|
289 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
290 |
+
batch_size=1,
|
291 |
+
dataset=dict(
|
292 |
+
ann_file='annotations/train.json',
|
293 |
+
backend_args=None,
|
294 |
+
data_prefix=dict(img='train/'),
|
295 |
+
data_root='/kaggle/working/mmdetection/dataset/',
|
296 |
+
filter_cfg=dict(filter_empty_gt=False, min_size=32),
|
297 |
+
metainfo=dict(classes=[
|
298 |
+
'000_aveda_shampoo',
|
299 |
+
'001_binder_clips_median',
|
300 |
+
'002_binder_clips_small',
|
301 |
+
'003_bombik_bucket',
|
302 |
+
'004_bonne_maman_blueberry',
|
303 |
+
'005_bonne_maman_raspberry',
|
304 |
+
'006_bonne_maman_strawberry',
|
305 |
+
'007_costa_caramel',
|
306 |
+
'008_essential_oil_bergamot',
|
307 |
+
'009_garlic_toast_spread',
|
308 |
+
'010_handcream_avocado',
|
309 |
+
'011_hb_calcium',
|
310 |
+
'012_hb_grapeseed',
|
311 |
+
'013_hb_marine_collagen',
|
312 |
+
'014_hellmanns_mayonnaise',
|
313 |
+
'015_illy_blend',
|
314 |
+
'016_japanese_finger_cookies',
|
315 |
+
'017_john_west_canned_tuna',
|
316 |
+
'018_kerastase_shampoo',
|
317 |
+
'019_kiehls_facial_cream',
|
318 |
+
'020_kiihne_balsamic',
|
319 |
+
'021_kiihne_honey_mustard',
|
320 |
+
'022_lindor_matcha',
|
321 |
+
'023_lindor_salted_caramel',
|
322 |
+
'024_lush_mask',
|
323 |
+
'025_pasta_sauce_black_pepper',
|
324 |
+
'026_pasta_sauce_tomato',
|
325 |
+
'027_pepsi',
|
326 |
+
'028_portable_yogurt_machine',
|
327 |
+
'029_selfile_stick',
|
328 |
+
'030_sour_lemon_drops',
|
329 |
+
'031_sticky_notes',
|
330 |
+
'032_stridex_green',
|
331 |
+
'033_thermos_flask_cream',
|
332 |
+
'034_thermos_flask_muji',
|
333 |
+
'035_thermos_flask_sliver',
|
334 |
+
'036_tragata_olive_oil',
|
335 |
+
'037_tulip_luncheon_meat',
|
336 |
+
'038_unicharm_cotton_pad',
|
337 |
+
'039_vinda_tissue',
|
338 |
+
'040_wrigley_doublemint_gum',
|
339 |
+
'041_baseball_cap_black',
|
340 |
+
'042_baseball_cap_pink',
|
341 |
+
'043_bfe_facial_mask',
|
342 |
+
'044_corgi_doll',
|
343 |
+
'045_dinosaur_doll',
|
344 |
+
'046_geo_mocha',
|
345 |
+
'047_geo_roast_charcoal',
|
346 |
+
'048_instant_noodle_black',
|
347 |
+
'049_instant_noodle_red',
|
348 |
+
'050_nabati_cheese_wafer',
|
349 |
+
'051_truffettes',
|
350 |
+
'052_acnes_cream',
|
351 |
+
'053_aveda_conditioner',
|
352 |
+
'054_banana_milk_drink',
|
353 |
+
'055_candle_beast',
|
354 |
+
'056_china_persimmon',
|
355 |
+
'057_danisa_butter_cookies',
|
356 |
+
'058_effaclar_duo',
|
357 |
+
'059_evelom_cleanser',
|
358 |
+
'060_glasses_box_blone',
|
359 |
+
'061_handcream_iris',
|
360 |
+
'062_handcream_lavender',
|
361 |
+
'063_handcream_rosewater',
|
362 |
+
'064_handcream_summer_hill',
|
363 |
+
'065_hr_serum',
|
364 |
+
'066_japanese_chocolate',
|
365 |
+
'067_kerastase_hair_treatment',
|
366 |
+
'068_kiehls_serum',
|
367 |
+
'069_korean_beef_marinade',
|
368 |
+
'070_korean_doenjang',
|
369 |
+
'071_korean_gochujang',
|
370 |
+
'072_korean_ssamjang',
|
371 |
+
'073_loccitane_soap',
|
372 |
+
'074_marvis_toothpaste_purple',
|
373 |
+
'075_mouse_thinkpad',
|
374 |
+
'076_oatly_chocolate',
|
375 |
+
'077_oatly_original',
|
376 |
+
'078_ousa_grated_cheese',
|
377 |
+
'079_polaroid_film',
|
378 |
+
'080_skinceuticals_be',
|
379 |
+
'081_skinceuticals_cf',
|
380 |
+
'082_skinceuticals_phyto',
|
381 |
+
'083_stapler_black',
|
382 |
+
'084_stapler_blue',
|
383 |
+
'085_sunscreen_blue',
|
384 |
+
'086_tempo_pocket_tissue',
|
385 |
+
'087_thermos_flask_purple',
|
386 |
+
'088_uha_matcha',
|
387 |
+
'089_urban_decay_spray',
|
388 |
+
'090_vitaboost_multivitamin',
|
389 |
+
'091_watercolor_penbox',
|
390 |
+
'092_youthlt_bilberry_complex',
|
391 |
+
'093_daiso_mod_remover',
|
392 |
+
'094_kaneyo_kitchen_bleach',
|
393 |
+
'095_lays_chip_bag_blue',
|
394 |
+
'096_lays_chip_bag_green',
|
395 |
+
'097_lays_chip_tube_auburn',
|
396 |
+
'098_lays_chip_tube_green',
|
397 |
+
'099_mug_blue',
|
398 |
+
]),
|
399 |
+
pipeline=[
|
400 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
401 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
402 |
+
dict(prob=0.5, type='RandomFlip'),
|
403 |
+
dict(
|
404 |
+
transforms=[
|
405 |
+
[
|
406 |
+
dict(
|
407 |
+
keep_ratio=True,
|
408 |
+
scales=[
|
409 |
+
(
|
410 |
+
480,
|
411 |
+
1333,
|
412 |
+
),
|
413 |
+
(
|
414 |
+
512,
|
415 |
+
1333,
|
416 |
+
),
|
417 |
+
(
|
418 |
+
544,
|
419 |
+
1333,
|
420 |
+
),
|
421 |
+
(
|
422 |
+
576,
|
423 |
+
1333,
|
424 |
+
),
|
425 |
+
(
|
426 |
+
608,
|
427 |
+
1333,
|
428 |
+
),
|
429 |
+
(
|
430 |
+
640,
|
431 |
+
1333,
|
432 |
+
),
|
433 |
+
(
|
434 |
+
672,
|
435 |
+
1333,
|
436 |
+
),
|
437 |
+
(
|
438 |
+
704,
|
439 |
+
1333,
|
440 |
+
),
|
441 |
+
(
|
442 |
+
736,
|
443 |
+
1333,
|
444 |
+
),
|
445 |
+
(
|
446 |
+
768,
|
447 |
+
1333,
|
448 |
+
),
|
449 |
+
(
|
450 |
+
800,
|
451 |
+
1333,
|
452 |
+
),
|
453 |
+
],
|
454 |
+
type='RandomChoiceResize'),
|
455 |
+
],
|
456 |
+
[
|
457 |
+
dict(
|
458 |
+
keep_ratio=True,
|
459 |
+
scales=[
|
460 |
+
(
|
461 |
+
400,
|
462 |
+
4200,
|
463 |
+
),
|
464 |
+
(
|
465 |
+
500,
|
466 |
+
4200,
|
467 |
+
),
|
468 |
+
(
|
469 |
+
600,
|
470 |
+
4200,
|
471 |
+
),
|
472 |
+
],
|
473 |
+
type='RandomChoiceResize'),
|
474 |
+
dict(
|
475 |
+
allow_negative_crop=True,
|
476 |
+
crop_size=(
|
477 |
+
384,
|
478 |
+
600,
|
479 |
+
),
|
480 |
+
crop_type='absolute_range',
|
481 |
+
type='RandomCrop'),
|
482 |
+
dict(
|
483 |
+
keep_ratio=True,
|
484 |
+
scales=[
|
485 |
+
(
|
486 |
+
480,
|
487 |
+
1333,
|
488 |
+
),
|
489 |
+
(
|
490 |
+
512,
|
491 |
+
1333,
|
492 |
+
),
|
493 |
+
(
|
494 |
+
544,
|
495 |
+
1333,
|
496 |
+
),
|
497 |
+
(
|
498 |
+
576,
|
499 |
+
1333,
|
500 |
+
),
|
501 |
+
(
|
502 |
+
608,
|
503 |
+
1333,
|
504 |
+
),
|
505 |
+
(
|
506 |
+
640,
|
507 |
+
1333,
|
508 |
+
),
|
509 |
+
(
|
510 |
+
672,
|
511 |
+
1333,
|
512 |
+
),
|
513 |
+
(
|
514 |
+
704,
|
515 |
+
1333,
|
516 |
+
),
|
517 |
+
(
|
518 |
+
736,
|
519 |
+
1333,
|
520 |
+
),
|
521 |
+
(
|
522 |
+
768,
|
523 |
+
1333,
|
524 |
+
),
|
525 |
+
(
|
526 |
+
800,
|
527 |
+
1333,
|
528 |
+
),
|
529 |
+
],
|
530 |
+
type='RandomChoiceResize'),
|
531 |
+
],
|
532 |
+
],
|
533 |
+
type='RandomChoice'),
|
534 |
+
dict(type='PackDetInputs'),
|
535 |
+
],
|
536 |
+
type='CocoDataset'),
|
537 |
+
num_workers=1,
|
538 |
+
persistent_workers=True,
|
539 |
+
sampler=dict(shuffle=True, type='DefaultSampler'))
|
540 |
+
train_pipeline = [
|
541 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
542 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
543 |
+
dict(prob=0.5, type='RandomFlip'),
|
544 |
+
dict(
|
545 |
+
transforms=[
|
546 |
+
[
|
547 |
+
dict(
|
548 |
+
keep_ratio=True,
|
549 |
+
scales=[
|
550 |
+
(
|
551 |
+
480,
|
552 |
+
1333,
|
553 |
+
),
|
554 |
+
(
|
555 |
+
512,
|
556 |
+
1333,
|
557 |
+
),
|
558 |
+
(
|
559 |
+
544,
|
560 |
+
1333,
|
561 |
+
),
|
562 |
+
(
|
563 |
+
576,
|
564 |
+
1333,
|
565 |
+
),
|
566 |
+
(
|
567 |
+
608,
|
568 |
+
1333,
|
569 |
+
),
|
570 |
+
(
|
571 |
+
640,
|
572 |
+
1333,
|
573 |
+
),
|
574 |
+
(
|
575 |
+
672,
|
576 |
+
1333,
|
577 |
+
),
|
578 |
+
(
|
579 |
+
704,
|
580 |
+
1333,
|
581 |
+
),
|
582 |
+
(
|
583 |
+
736,
|
584 |
+
1333,
|
585 |
+
),
|
586 |
+
(
|
587 |
+
768,
|
588 |
+
1333,
|
589 |
+
),
|
590 |
+
(
|
591 |
+
800,
|
592 |
+
1333,
|
593 |
+
),
|
594 |
+
],
|
595 |
+
type='RandomChoiceResize'),
|
596 |
+
],
|
597 |
+
[
|
598 |
+
dict(
|
599 |
+
keep_ratio=True,
|
600 |
+
scales=[
|
601 |
+
(
|
602 |
+
400,
|
603 |
+
4200,
|
604 |
+
),
|
605 |
+
(
|
606 |
+
500,
|
607 |
+
4200,
|
608 |
+
),
|
609 |
+
(
|
610 |
+
600,
|
611 |
+
4200,
|
612 |
+
),
|
613 |
+
],
|
614 |
+
type='RandomChoiceResize'),
|
615 |
+
dict(
|
616 |
+
allow_negative_crop=True,
|
617 |
+
crop_size=(
|
618 |
+
384,
|
619 |
+
600,
|
620 |
+
),
|
621 |
+
crop_type='absolute_range',
|
622 |
+
type='RandomCrop'),
|
623 |
+
dict(
|
624 |
+
keep_ratio=True,
|
625 |
+
scales=[
|
626 |
+
(
|
627 |
+
480,
|
628 |
+
1333,
|
629 |
+
),
|
630 |
+
(
|
631 |
+
512,
|
632 |
+
1333,
|
633 |
+
),
|
634 |
+
(
|
635 |
+
544,
|
636 |
+
1333,
|
637 |
+
),
|
638 |
+
(
|
639 |
+
576,
|
640 |
+
1333,
|
641 |
+
),
|
642 |
+
(
|
643 |
+
608,
|
644 |
+
1333,
|
645 |
+
),
|
646 |
+
(
|
647 |
+
640,
|
648 |
+
1333,
|
649 |
+
),
|
650 |
+
(
|
651 |
+
672,
|
652 |
+
1333,
|
653 |
+
),
|
654 |
+
(
|
655 |
+
704,
|
656 |
+
1333,
|
657 |
+
),
|
658 |
+
(
|
659 |
+
736,
|
660 |
+
1333,
|
661 |
+
),
|
662 |
+
(
|
663 |
+
768,
|
664 |
+
1333,
|
665 |
+
),
|
666 |
+
(
|
667 |
+
800,
|
668 |
+
1333,
|
669 |
+
),
|
670 |
+
],
|
671 |
+
type='RandomChoiceResize'),
|
672 |
+
],
|
673 |
+
],
|
674 |
+
type='RandomChoice'),
|
675 |
+
dict(type='PackDetInputs'),
|
676 |
+
]
|
677 |
+
val_cfg = dict(type='ValLoop')
|
678 |
+
val_dataloader = dict(
|
679 |
+
batch_size=1,
|
680 |
+
dataset=dict(
|
681 |
+
ann_file='annotations/instances_val2017.json',
|
682 |
+
backend_args=None,
|
683 |
+
data_prefix=dict(img='val2017/'),
|
684 |
+
data_root='data/coco/',
|
685 |
+
pipeline=[
|
686 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
687 |
+
dict(keep_ratio=True, scale=(
|
688 |
+
1333,
|
689 |
+
800,
|
690 |
+
), type='Resize'),
|
691 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
692 |
+
dict(
|
693 |
+
meta_keys=(
|
694 |
+
'img_id',
|
695 |
+
'img_path',
|
696 |
+
'ori_shape',
|
697 |
+
'img_shape',
|
698 |
+
'scale_factor',
|
699 |
+
),
|
700 |
+
type='PackDetInputs'),
|
701 |
+
],
|
702 |
+
test_mode=True,
|
703 |
+
type='CocoDataset'),
|
704 |
+
drop_last=False,
|
705 |
+
num_workers=2,
|
706 |
+
persistent_workers=True,
|
707 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
708 |
+
val_evaluator = dict(
|
709 |
+
ann_file='/kaggle/working/mmdetection/dataset/annotations/val.json',
|
710 |
+
backend_args=None,
|
711 |
+
format_only=False,
|
712 |
+
metric='bbox',
|
713 |
+
type='CocoMetric')
|
714 |
+
vis_backends = [
|
715 |
+
dict(type='LocalVisBackend'),
|
716 |
+
]
|
717 |
+
visualizer = dict(
|
718 |
+
name='visualizer',
|
719 |
+
type='DetLocalVisualizer',
|
720 |
+
vis_backends=[
|
721 |
+
dict(type='LocalVisBackend'),
|
722 |
+
])
|
723 |
+
work_dir = './work_dirs/dino-4scale_resnet50_8xb2-12e_coco'
|
epoch_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6941313283f8661beca8e66eb0c6da1b6cebf57566490b210788f793f9eb626
|
3 |
+
size 537956199
|
last_checkpoint
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/kaggle/working/mmdetection/work_dirs/dino-4scale_resnet50_8xb2-12e_coco/epoch_6.pth
|