File size: 4,975 Bytes
c298520 9323403 6304815 c298520 6304815 49c4dc3 6304815 bba97c3 6304815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
base_model:
- NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1
- cognitivecomputations/TinyDolphin-2.8-1.1b
- NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
- NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1
tags:
- mergekit
- merge
widget:
- text: "<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n<|im_start|>user\npodrias escribir un codigo de ejemplo en Python<|im_end|>\n<|im_start|>assistant\n"
license: apache-2.0
---
# merged
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1](https://huggingface.co/NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1) as a base.
### Models Merged
The following models were included in the merge:
* [NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1](https://huggingface.co/NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1)
* [cognitivecomputations/TinyDolphin-2.8-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8-1.1b)
* [NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1](https://huggingface.co/NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model:
model:
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
dtype: bfloat16
merge_method: dare_ties
slices:
- sources:
- layer_range: [0, 22]
model:
model:
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
- layer_range: [0, 22]
model:
model:
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
parameters:
density: 0.55
weight: 0.55
- layer_range: [0, 22]
model:
model:
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1
parameters:
density: 0.55
weight: 0.56
- layer_range: [0, 22]
model:
model:
path: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1
parameters:
density: 0.55
weight: 0.56
- layer_range: [0, 22]
model:
model:
path: cognitivecomputations/TinyDolphin-2.8-1.1b
parameters:
density: 0.55
weight: 0.56
```
### Delta no log
![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/oG9XVMNEBEBDv5JjJHunO.png)
### Delta log
![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/emWX9vgFXRLEd6jYGp89I.png)
```Python
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,
GenerationConfig,
TextIteratorStreamer,
)
import torch
new_model= "NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_all_Cluster_merge_v1"
model = AutoModelForCausalLM.from_pretrained(#f'NickyNicky/{new_model}',
new_model,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage= True,
# use_flash_attention_2=False,
)
tokenizer = AutoTokenizer.from_pretrained(new_model,
max_length=2048,
trust_remote_code=True,
use_fast = True,
)
tokenizer.pad_token = tokenizer.eos_token
# tokenizer.padding_side = 'left'
tokenizer.padding_side = 'right'
prompt= """<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
escribe una historia de amor.<|im_end|>
<|im_start|>assistant
"""
inputs = tokenizer.encode(prompt,
return_tensors="pt",
add_special_tokens=False).cuda()#.to("cuda") # False # True
generation_config = GenerationConfig(
max_new_tokens=700,
# temperature=0.5,
# top_p=0.9,
# top_k=40,
# repetition_penalty=1.1, #1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
outputs = model.generate(
generation_config=generation_config,
input_ids=inputs,)
# tokenizer.decode(outputs[0], skip_special_tokens=False) #True
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
``` |