Nnarruqt commited on
Commit
1e092d2
·
1 Parent(s): 2fc8354

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.74 +/- 0.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f7896721518b6212eb8251920d9ee83bf9312ca13d82509b28235965c4f12de
3
+ size 108038
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f852f59e550>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f852f615c30>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 865668,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678050896872648052,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9oqwvtYHmT+HEAQ/ZfGZvrvgYj6Zrpe/hw7GPduBGb67syY+yBtUP3CPY79YQB49lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo8IZv9k3kz9Qpl8/y98fPm/zQT9Qo86/zHu1PXb6y76M8bs+ORm1Px2Qgr/Gqac9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD2irC+1geZP4cQBD8FYNU9tctPPBSjgjxl8Zm+u+BiPpmul796o2e9jMvCPb3+n7yHDsY924EZvruzJj5VEa68X7B1vv85xD3IG1Q/cI9jv1hAHj3/Ytm8MvehPMIuhDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[-0.3448102 1.1955516 0.5158772 ]\n [-0.30066982 0.2215604 -1.1850158 ]\n [ 0.0967074 -0.14990942 0.16279499]\n [ 0.8285489 -0.88890743 0.03863558]]",
60
+ "desired_goal": "[[-0.6006262 1.1501418 0.8736315 ]\n [ 0.15612714 0.75762075 -1.6143589 ]\n [ 0.08861503 -0.39839524 0.36707723]\n [ 1.4148322 -1.020023 0.08186679]]",
61
+ "observation": "[[-0.3448102 1.1955516 0.5158772 0.10418705 0.01268284 0.0159469 ]\n [-0.30066982 0.2215604 -1.1850158 -0.05655239 0.0951148 -0.01953065]\n [ 0.0967074 -0.14990942 0.16279499 -0.0212485 -0.23993061 0.09581374]\n [ 0.8285489 -0.88890743 0.03863558 -0.02653646 0.01977119 0.01613558]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgHrePdVgFL773Jw98ydKuweJbz2Wfmc9YesMPjqxoby8OIo6ImGuvWlqaL0OkTE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.10863209 -0.14490063 0.07659336]\n [-0.00308466 0.05848029 0.05651721]\n [ 0.13761665 -0.01973783 0.00105455]\n [-0.0851462 -0.05674211 0.1734049 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.13434000000000001,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjzf5LTqZBcCUhpRSlIwBbJRLMowBdJRHQKbfUM0gr6N1fZQoaAZoCWgPQwh4Jclzfd/7v5SGlFKUaBVLMmgWR0Cm3wvkJa7mdX2UKGgGaAloD0MI5zQLtDtEBsCUhpRSlGgVSzJoFkdApt7HJo0yg3V9lChoBmgJaA9DCPj8MEJ49Pi/lIaUUpRoFUsyaBZHQKbehgk1Muh1fZQoaAZoCWgPQwhX7gVmheL6v5SGlFKUaBVLMmgWR0Cm4TbbL2YfdX2UKGgGaAloD0MIkgciizSx/b+UhpRSlGgVSzJoFkdApuDyHymQ83V9lChoBmgJaA9DCKGDLuHQW/q/lIaUUpRoFUsyaBZHQKbgraK1og51fZQoaAZoCWgPQwiD+wEPDGD8v5SGlFKUaBVLMmgWR0Cm4GxsVLzxdX2UKGgGaAloD0MI38Mlx50SBsCUhpRSlGgVSzJoFkdApuM4bp/wzHV9lChoBmgJaA9DCPd4IR0eggDAlIaUUpRoFUsyaBZHQKbi85Dqnm91fZQoaAZoCWgPQwj6nLtdL+0DwJSGlFKUaBVLMmgWR0Cm4q8NYr8SdX2UKGgGaAloD0MIaY8X0uHh/r+UhpRSlGgVSzJoFkdApuJuzByjpXV9lChoBmgJaA9DCF1wBn+/WP6/lIaUUpRoFUsyaBZHQKblR29tdiV1fZQoaAZoCWgPQwhgkzXqIboCwJSGlFKUaBVLMmgWR0Cm5QJ1q33IdX2UKGgGaAloD0MICp5CrtSzA8CUhpRSlGgVSzJoFkdApuS+UB4lhXV9lChoBmgJaA9DCG77HvXX6wfAlIaUUpRoFUsyaBZHQKbkfUFSsKd1fZQoaAZoCWgPQwg/cmvSbYkDwJSGlFKUaBVLMmgWR0Cm53EVWS2ZdX2UKGgGaAloD0MI9aCgFK1c/b+UhpRSlGgVSzJoFkdApucsFnqVyHV9lChoBmgJaA9DCC5Yqgt4Gfe/lIaUUpRoFUsyaBZHQKbm57aZhKF1fZQoaAZoCWgPQwi3Qe23dmIDwJSGlFKUaBVLMmgWR0Cm5qaYVqN7dX2UKGgGaAloD0MI3JvfMNEAD8CUhpRSlGgVSzJoFkdApukYRXfZVXV9lChoBmgJaA9DCLGjcajftRDAlIaUUpRoFUsyaBZHQKbo0g/Tspp1fZQoaAZoCWgPQwhVE0TdB+AIwJSGlFKUaBVLMmgWR0Cm6IxxDLKWdX2UKGgGaAloD0MI8fJ0rigl7r+UhpRSlGgVSzJoFkdApuhKQq7ROXV9lChoBmgJaA9DCEpATMKFfAXAlIaUUpRoFUsyaBZHQKbqQQ8wHqx1fZQoaAZoCWgPQwhywRn8/SIEwJSGlFKUaBVLMmgWR0Cm6frN4Z/DdX2UKGgGaAloD0MIZJC7CFN0BMCUhpRSlGgVSzJoFkdApum1UADJVHV9lChoBmgJaA9DCKINwAZESPu/lIaUUpRoFUsyaBZHQKbpc7Qswtd1fZQoaAZoCWgPQwhubHak+s77v5SGlFKUaBVLMmgWR0Cm63guRLbpdX2UKGgGaAloD0MIQQ+1bRhFAMCUhpRSlGgVSzJoFkdApusypBHCoHV9lChoBmgJaA9DCJPfopOllvm/lIaUUpRoFUsyaBZHQKbq7QLNOdp1fZQoaAZoCWgPQwg7+8qD9DQCwJSGlFKUaBVLMmgWR0Cm6qrwF1SwdX2UKGgGaAloD0MIOgX52cg1BMCUhpRSlGgVSzJoFkdApuyfoaDPGHV9lChoBmgJaA9DCPW6RWCs7/e/lIaUUpRoFUsyaBZHQKbsWZGax5d1fZQoaAZoCWgPQwiCdLFppZACwJSGlFKUaBVLMmgWR0Cm7BQWN3nqdX2UKGgGaAloD0MIehhanZxh+b+UhpRSlGgVSzJoFkdApuvSOcUdrHV9lChoBmgJaA9DCF+VC5V/rfi/lIaUUpRoFUsyaBZHQKbtx9w3o9t1fZQoaAZoCWgPQwiSzOodbgfyv5SGlFKUaBVLMmgWR0Cm7YG29crzdX2UKGgGaAloD0MIcjeI1or2/L+UhpRSlGgVSzJoFkdApu08BKcurnV9lChoBmgJaA9DCCP3dHXHIgrAlIaUUpRoFUsyaBZHQKbs+iM5wOx1fZQoaAZoCWgPQwgN/+kGChwJwJSGlFKUaBVLMmgWR0Cm7u5Hd43WdX2UKGgGaAloD0MIhVypZ0FoDcCUhpRSlGgVSzJoFkdApu6oJHAh0XV9lChoBmgJaA9DCH+HokCfSPu/lIaUUpRoFUsyaBZHQKbuYoRZlnR1fZQoaAZoCWgPQwjUnSeeswX+v5SGlFKUaBVLMmgWR0Cm7iCHqNZNdX2UKGgGaAloD0MI8WQ3M/pR+L+UhpRSlGgVSzJoFkdApvAtepn6EnV9lChoBmgJaA9DCObLC7CPTgPAlIaUUpRoFUsyaBZHQKbv50U47zV1fZQoaAZoCWgPQwjECyJS0y4CwJSGlFKUaBVLMmgWR0Cm76GhEjPfdX2UKGgGaAloD0MIq+ek943vB8CUhpRSlGgVSzJoFkdApu9fjbSJCXV9lChoBmgJaA9DCMh+FkuRvAPAlIaUUpRoFUsyaBZHQKbxWmVqveR1fZQoaAZoCWgPQwjx12SNegj6v5SGlFKUaBVLMmgWR0Cm8RRJ/XoUdX2UKGgGaAloD0MIwZFAg029B8CUhpRSlGgVSzJoFkdApvDOrXDm83V9lChoBmgJaA9DCLt868N6IwTAlIaUUpRoFUsyaBZHQKbwjI6Kcd51fZQoaAZoCWgPQwiDMLd7uY/3v5SGlFKUaBVLMmgWR0Cm8ok9lmOEdX2UKGgGaAloD0MIArovZ7YrBsCUhpRSlGgVSzJoFkdApvJC44Ia+HV9lChoBmgJaA9DCD55WKg1Dfu/lIaUUpRoFUsyaBZHQKbx/Sa3I+51fZQoaAZoCWgPQwgEIVnABC77v5SGlFKUaBVLMmgWR0Cm8bsWoFV1dX2UKGgGaAloD0MIzO1e7pNjCsCUhpRSlGgVSzJoFkdApvO1/6O5rnV9lChoBmgJaA9DCD9xAP2+P/K/lIaUUpRoFUsyaBZHQKbzcAI6bON1fZQoaAZoCWgPQwjnUfF/R7QJwJSGlFKUaBVLMmgWR0Cm8ypq7AcldX2UKGgGaAloD0MIaydKQiJNCsCUhpRSlGgVSzJoFkdApvLolF+d9XV9lChoBmgJaA9DCG9+w0SDNATAlIaUUpRoFUsyaBZHQKb03EzfrKN1fZQoaAZoCWgPQwhJERlW8WYGwJSGlFKUaBVLMmgWR0Cm9JZB9kSVdX2UKGgGaAloD0MI7L/OTZux+L+UhpRSlGgVSzJoFkdApvRQq7ROUXV9lChoBmgJaA9DCF8n9WVpxwDAlIaUUpRoFUsyaBZHQKb0Ds2vStx1fZQoaAZoCWgPQwjjw+xl27kTwJSGlFKUaBVLMmgWR0Cm9geqaPS2dX2UKGgGaAloD0MI6WFodXIGAcCUhpRSlGgVSzJoFkdApvXBigCfYnV9lChoBmgJaA9DCB42kZkLXO2/lIaUUpRoFUsyaBZHQKb1e+Cbtqp1fZQoaAZoCWgPQwiH+fIC7OMLwJSGlFKUaBVLMmgWR0Cm9TnVPN3XdX2UKGgGaAloD0MI1HyVfOyuCsCUhpRSlGgVSzJoFkdApvdDz5GjK3V9lChoBmgJaA9DCIY6rHDLRwbAlIaUUpRoFUsyaBZHQKb2/atcOb11fZQoaAZoCWgPQwi7mGa61wn8v5SGlFKUaBVLMmgWR0Cm9rgs052hdX2UKGgGaAloD0MIG/FkNzM697+UhpRSlGgVSzJoFkdApvZ2Nm16V3V9lChoBmgJaA9DCFOzB1qBYQbAlIaUUpRoFUsyaBZHQKb4cCBf8dh1fZQoaAZoCWgPQwgaUG9Gzdfsv5SGlFKUaBVLMmgWR0Cm+CnMlkYodX2UKGgGaAloD0MI626e6pC7BMCUhpRSlGgVSzJoFkdApvfkIToMa3V9lChoBmgJaA9DCOxnsRTJlwnAlIaUUpRoFUsyaBZHQKb3ogoPTXt1fZQoaAZoCWgPQwgRjINLx1wEwJSGlFKUaBVLMmgWR0Cm+ZiWu5jIdX2UKGgGaAloD0MIPMH+69y0EcCUhpRSlGgVSzJoFkdApvlSbvw3HnV9lChoBmgJaA9DCHkB9tGpKwbAlIaUUpRoFUsyaBZHQKb5DMnqmj11fZQoaAZoCWgPQwg89x4uOU4JwJSGlFKUaBVLMmgWR0Cm+Mq/M4cWdX2UKGgGaAloD0MI7ded7jwxAMCUhpRSlGgVSzJoFkdApvrGU4aP0nV9lChoBmgJaA9DCPaX3ZOHhem/lIaUUpRoFUsyaBZHQKb6f+NtIkJ1fZQoaAZoCWgPQwjeyDzyB8MFwJSGlFKUaBVLMmgWR0Cm+jo60Y0mdX2UKGgGaAloD0MIarx0kxgkBcCUhpRSlGgVSzJoFkdApvn4EwFkhHV9lChoBmgJaA9DCGEb8WQ3EwTAlIaUUpRoFUsyaBZHQKb78zY287J1fZQoaAZoCWgPQwieJjPeVvr8v5SGlFKUaBVLMmgWR0Cm+60x20RfdX2UKGgGaAloD0MI26UNh6XB+r+UhpRSlGgVSzJoFkdApvtnva11GXV9lChoBmgJaA9DCA9eu7Th0ATAlIaUUpRoFUsyaBZHQKb7Je67NB51fZQoaAZoCWgPQwjh7NYyGY4SwJSGlFKUaBVLMmgWR0Cm/Xy+6Ae8dX2UKGgGaAloD0MI3H75ZMVwBMCUhpRSlGgVSzJoFkdApv03oRqXW3V9lChoBmgJaA9DCBxfe2ZJsBTAlIaUUpRoFUsyaBZHQKb88obXHzZ1fZQoaAZoCWgPQwgE5bZ9j/rkv5SGlFKUaBVLMmgWR0Cm/LFQuVX4dX2UKGgGaAloD0MIILJIE+8A8b+UhpRSlGgVSzJoFkdApv9sLBsQ/XV9lChoBmgJaA9DCMwk6gWfpvS/lIaUUpRoFUsyaBZHQKb/JuIAOrh1fZQoaAZoCWgPQwirzf+rjnwHwJSGlFKUaBVLMmgWR0Cm/uI9C/oJdX2UKGgGaAloD0MICvX0EfgjDMCUhpRSlGgVSzJoFkdApv6hvJiiI3V9lChoBmgJaA9DCEJ5H0dzZBjAlIaUUpRoFUsyaBZHQKcBhdrwe/51fZQoaAZoCWgPQwhnnfF9cQkHwJSGlFKUaBVLMmgWR0CnAUDZlFtsdX2UKGgGaAloD0MII9qOqbvyBsCUhpRSlGgVSzJoFkdApwD8bYK6WnV9lChoBmgJaA9DCC8wKxTpPgPAlIaUUpRoFUsyaBZHQKcAu4ZMtbt1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 43283,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8594485fd6f28bf5f44d9d4723392faf6abeed5096c87c60193d73279396434d
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:982ee53ebfa3ba4c87ca880ad9a3cdc7914c4bb6f1adefa6aaddd154b8f6d4f6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f852f59e550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f852f615c30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 865668, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678050896872648052, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9oqwvtYHmT+HEAQ/ZfGZvrvgYj6Zrpe/hw7GPduBGb67syY+yBtUP3CPY79YQB49lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo8IZv9k3kz9Qpl8/y98fPm/zQT9Qo86/zHu1PXb6y76M8bs+ORm1Px2Qgr/Gqac9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD2irC+1geZP4cQBD8FYNU9tctPPBSjgjxl8Zm+u+BiPpmul796o2e9jMvCPb3+n7yHDsY924EZvruzJj5VEa68X7B1vv85xD3IG1Q/cI9jv1hAHj3/Ytm8MvehPMIuhDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.3448102 1.1955516 0.5158772 ]\n [-0.30066982 0.2215604 -1.1850158 ]\n [ 0.0967074 -0.14990942 0.16279499]\n [ 0.8285489 -0.88890743 0.03863558]]", "desired_goal": "[[-0.6006262 1.1501418 0.8736315 ]\n [ 0.15612714 0.75762075 -1.6143589 ]\n [ 0.08861503 -0.39839524 0.36707723]\n [ 1.4148322 -1.020023 0.08186679]]", "observation": "[[-0.3448102 1.1955516 0.5158772 0.10418705 0.01268284 0.0159469 ]\n [-0.30066982 0.2215604 -1.1850158 -0.05655239 0.0951148 -0.01953065]\n [ 0.0967074 -0.14990942 0.16279499 -0.0212485 -0.23993061 0.09581374]\n [ 0.8285489 -0.88890743 0.03863558 -0.02653646 0.01977119 0.01613558]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgHrePdVgFL773Jw98ydKuweJbz2Wfmc9YesMPjqxoby8OIo6ImGuvWlqaL0OkTE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10863209 -0.14490063 0.07659336]\n [-0.00308466 0.05848029 0.05651721]\n [ 0.13761665 -0.01973783 0.00105455]\n [-0.0851462 -0.05674211 0.1734049 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.13434000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjzf5LTqZBcCUhpRSlIwBbJRLMowBdJRHQKbfUM0gr6N1fZQoaAZoCWgPQwh4Jclzfd/7v5SGlFKUaBVLMmgWR0Cm3wvkJa7mdX2UKGgGaAloD0MI5zQLtDtEBsCUhpRSlGgVSzJoFkdApt7HJo0yg3V9lChoBmgJaA9DCPj8MEJ49Pi/lIaUUpRoFUsyaBZHQKbehgk1Muh1fZQoaAZoCWgPQwhX7gVmheL6v5SGlFKUaBVLMmgWR0Cm4TbbL2YfdX2UKGgGaAloD0MIkgciizSx/b+UhpRSlGgVSzJoFkdApuDyHymQ83V9lChoBmgJaA9DCKGDLuHQW/q/lIaUUpRoFUsyaBZHQKbgraK1og51fZQoaAZoCWgPQwiD+wEPDGD8v5SGlFKUaBVLMmgWR0Cm4GxsVLzxdX2UKGgGaAloD0MI38Mlx50SBsCUhpRSlGgVSzJoFkdApuM4bp/wzHV9lChoBmgJaA9DCPd4IR0eggDAlIaUUpRoFUsyaBZHQKbi85Dqnm91fZQoaAZoCWgPQwj6nLtdL+0DwJSGlFKUaBVLMmgWR0Cm4q8NYr8SdX2UKGgGaAloD0MIaY8X0uHh/r+UhpRSlGgVSzJoFkdApuJuzByjpXV9lChoBmgJaA9DCF1wBn+/WP6/lIaUUpRoFUsyaBZHQKblR29tdiV1fZQoaAZoCWgPQwhgkzXqIboCwJSGlFKUaBVLMmgWR0Cm5QJ1q33IdX2UKGgGaAloD0MICp5CrtSzA8CUhpRSlGgVSzJoFkdApuS+UB4lhXV9lChoBmgJaA9DCG77HvXX6wfAlIaUUpRoFUsyaBZHQKbkfUFSsKd1fZQoaAZoCWgPQwg/cmvSbYkDwJSGlFKUaBVLMmgWR0Cm53EVWS2ZdX2UKGgGaAloD0MI9aCgFK1c/b+UhpRSlGgVSzJoFkdApucsFnqVyHV9lChoBmgJaA9DCC5Yqgt4Gfe/lIaUUpRoFUsyaBZHQKbm57aZhKF1fZQoaAZoCWgPQwi3Qe23dmIDwJSGlFKUaBVLMmgWR0Cm5qaYVqN7dX2UKGgGaAloD0MI3JvfMNEAD8CUhpRSlGgVSzJoFkdApukYRXfZVXV9lChoBmgJaA9DCLGjcajftRDAlIaUUpRoFUsyaBZHQKbo0g/Tspp1fZQoaAZoCWgPQwhVE0TdB+AIwJSGlFKUaBVLMmgWR0Cm6IxxDLKWdX2UKGgGaAloD0MI8fJ0rigl7r+UhpRSlGgVSzJoFkdApuhKQq7ROXV9lChoBmgJaA9DCEpATMKFfAXAlIaUUpRoFUsyaBZHQKbqQQ8wHqx1fZQoaAZoCWgPQwhywRn8/SIEwJSGlFKUaBVLMmgWR0Cm6frN4Z/DdX2UKGgGaAloD0MIZJC7CFN0BMCUhpRSlGgVSzJoFkdApum1UADJVHV9lChoBmgJaA9DCKINwAZESPu/lIaUUpRoFUsyaBZHQKbpc7Qswtd1fZQoaAZoCWgPQwhubHak+s77v5SGlFKUaBVLMmgWR0Cm63guRLbpdX2UKGgGaAloD0MIQQ+1bRhFAMCUhpRSlGgVSzJoFkdApusypBHCoHV9lChoBmgJaA9DCJPfopOllvm/lIaUUpRoFUsyaBZHQKbq7QLNOdp1fZQoaAZoCWgPQwg7+8qD9DQCwJSGlFKUaBVLMmgWR0Cm6qrwF1SwdX2UKGgGaAloD0MIOgX52cg1BMCUhpRSlGgVSzJoFkdApuyfoaDPGHV9lChoBmgJaA9DCPW6RWCs7/e/lIaUUpRoFUsyaBZHQKbsWZGax5d1fZQoaAZoCWgPQwiCdLFppZACwJSGlFKUaBVLMmgWR0Cm7BQWN3nqdX2UKGgGaAloD0MIehhanZxh+b+UhpRSlGgVSzJoFkdApuvSOcUdrHV9lChoBmgJaA9DCF+VC5V/rfi/lIaUUpRoFUsyaBZHQKbtx9w3o9t1fZQoaAZoCWgPQwiSzOodbgfyv5SGlFKUaBVLMmgWR0Cm7YG29crzdX2UKGgGaAloD0MIcjeI1or2/L+UhpRSlGgVSzJoFkdApu08BKcurnV9lChoBmgJaA9DCCP3dHXHIgrAlIaUUpRoFUsyaBZHQKbs+iM5wOx1fZQoaAZoCWgPQwgN/+kGChwJwJSGlFKUaBVLMmgWR0Cm7u5Hd43WdX2UKGgGaAloD0MIhVypZ0FoDcCUhpRSlGgVSzJoFkdApu6oJHAh0XV9lChoBmgJaA9DCH+HokCfSPu/lIaUUpRoFUsyaBZHQKbuYoRZlnR1fZQoaAZoCWgPQwjUnSeeswX+v5SGlFKUaBVLMmgWR0Cm7iCHqNZNdX2UKGgGaAloD0MI8WQ3M/pR+L+UhpRSlGgVSzJoFkdApvAtepn6EnV9lChoBmgJaA9DCObLC7CPTgPAlIaUUpRoFUsyaBZHQKbv50U47zV1fZQoaAZoCWgPQwjECyJS0y4CwJSGlFKUaBVLMmgWR0Cm76GhEjPfdX2UKGgGaAloD0MIq+ek943vB8CUhpRSlGgVSzJoFkdApu9fjbSJCXV9lChoBmgJaA9DCMh+FkuRvAPAlIaUUpRoFUsyaBZHQKbxWmVqveR1fZQoaAZoCWgPQwjx12SNegj6v5SGlFKUaBVLMmgWR0Cm8RRJ/XoUdX2UKGgGaAloD0MIwZFAg029B8CUhpRSlGgVSzJoFkdApvDOrXDm83V9lChoBmgJaA9DCLt868N6IwTAlIaUUpRoFUsyaBZHQKbwjI6Kcd51fZQoaAZoCWgPQwiDMLd7uY/3v5SGlFKUaBVLMmgWR0Cm8ok9lmOEdX2UKGgGaAloD0MIArovZ7YrBsCUhpRSlGgVSzJoFkdApvJC44Ia+HV9lChoBmgJaA9DCD55WKg1Dfu/lIaUUpRoFUsyaBZHQKbx/Sa3I+51fZQoaAZoCWgPQwgEIVnABC77v5SGlFKUaBVLMmgWR0Cm8bsWoFV1dX2UKGgGaAloD0MIzO1e7pNjCsCUhpRSlGgVSzJoFkdApvO1/6O5rnV9lChoBmgJaA9DCD9xAP2+P/K/lIaUUpRoFUsyaBZHQKbzcAI6bON1fZQoaAZoCWgPQwjnUfF/R7QJwJSGlFKUaBVLMmgWR0Cm8ypq7AcldX2UKGgGaAloD0MIaydKQiJNCsCUhpRSlGgVSzJoFkdApvLolF+d9XV9lChoBmgJaA9DCG9+w0SDNATAlIaUUpRoFUsyaBZHQKb03EzfrKN1fZQoaAZoCWgPQwhJERlW8WYGwJSGlFKUaBVLMmgWR0Cm9JZB9kSVdX2UKGgGaAloD0MI7L/OTZux+L+UhpRSlGgVSzJoFkdApvRQq7ROUXV9lChoBmgJaA9DCF8n9WVpxwDAlIaUUpRoFUsyaBZHQKb0Ds2vStx1fZQoaAZoCWgPQwjjw+xl27kTwJSGlFKUaBVLMmgWR0Cm9geqaPS2dX2UKGgGaAloD0MI6WFodXIGAcCUhpRSlGgVSzJoFkdApvXBigCfYnV9lChoBmgJaA9DCB42kZkLXO2/lIaUUpRoFUsyaBZHQKb1e+Cbtqp1fZQoaAZoCWgPQwiH+fIC7OMLwJSGlFKUaBVLMmgWR0Cm9TnVPN3XdX2UKGgGaAloD0MI1HyVfOyuCsCUhpRSlGgVSzJoFkdApvdDz5GjK3V9lChoBmgJaA9DCIY6rHDLRwbAlIaUUpRoFUsyaBZHQKb2/atcOb11fZQoaAZoCWgPQwi7mGa61wn8v5SGlFKUaBVLMmgWR0Cm9rgs052hdX2UKGgGaAloD0MIG/FkNzM697+UhpRSlGgVSzJoFkdApvZ2Nm16V3V9lChoBmgJaA9DCFOzB1qBYQbAlIaUUpRoFUsyaBZHQKb4cCBf8dh1fZQoaAZoCWgPQwgaUG9Gzdfsv5SGlFKUaBVLMmgWR0Cm+CnMlkYodX2UKGgGaAloD0MI626e6pC7BMCUhpRSlGgVSzJoFkdApvfkIToMa3V9lChoBmgJaA9DCOxnsRTJlwnAlIaUUpRoFUsyaBZHQKb3ogoPTXt1fZQoaAZoCWgPQwgRjINLx1wEwJSGlFKUaBVLMmgWR0Cm+ZiWu5jIdX2UKGgGaAloD0MIPMH+69y0EcCUhpRSlGgVSzJoFkdApvlSbvw3HnV9lChoBmgJaA9DCHkB9tGpKwbAlIaUUpRoFUsyaBZHQKb5DMnqmj11fZQoaAZoCWgPQwg89x4uOU4JwJSGlFKUaBVLMmgWR0Cm+Mq/M4cWdX2UKGgGaAloD0MI7ded7jwxAMCUhpRSlGgVSzJoFkdApvrGU4aP0nV9lChoBmgJaA9DCPaX3ZOHhem/lIaUUpRoFUsyaBZHQKb6f+NtIkJ1fZQoaAZoCWgPQwjeyDzyB8MFwJSGlFKUaBVLMmgWR0Cm+jo60Y0mdX2UKGgGaAloD0MIarx0kxgkBcCUhpRSlGgVSzJoFkdApvn4EwFkhHV9lChoBmgJaA9DCGEb8WQ3EwTAlIaUUpRoFUsyaBZHQKb78zY287J1fZQoaAZoCWgPQwieJjPeVvr8v5SGlFKUaBVLMmgWR0Cm+60x20RfdX2UKGgGaAloD0MI26UNh6XB+r+UhpRSlGgVSzJoFkdApvtnva11GXV9lChoBmgJaA9DCA9eu7Th0ATAlIaUUpRoFUsyaBZHQKb7Je67NB51fZQoaAZoCWgPQwjh7NYyGY4SwJSGlFKUaBVLMmgWR0Cm/Xy+6Ae8dX2UKGgGaAloD0MI3H75ZMVwBMCUhpRSlGgVSzJoFkdApv03oRqXW3V9lChoBmgJaA9DCBxfe2ZJsBTAlIaUUpRoFUsyaBZHQKb88obXHzZ1fZQoaAZoCWgPQwgE5bZ9j/rkv5SGlFKUaBVLMmgWR0Cm/LFQuVX4dX2UKGgGaAloD0MIILJIE+8A8b+UhpRSlGgVSzJoFkdApv9sLBsQ/XV9lChoBmgJaA9DCMwk6gWfpvS/lIaUUpRoFUsyaBZHQKb/JuIAOrh1fZQoaAZoCWgPQwirzf+rjnwHwJSGlFKUaBVLMmgWR0Cm/uI9C/oJdX2UKGgGaAloD0MICvX0EfgjDMCUhpRSlGgVSzJoFkdApv6hvJiiI3V9lChoBmgJaA9DCEJ5H0dzZBjAlIaUUpRoFUsyaBZHQKcBhdrwe/51fZQoaAZoCWgPQwhnnfF9cQkHwJSGlFKUaBVLMmgWR0CnAUDZlFtsdX2UKGgGaAloD0MII9qOqbvyBsCUhpRSlGgVSzJoFkdApwD8bYK6WnV9lChoBmgJaA9DCC8wKxTpPgPAlIaUUpRoFUsyaBZHQKcAu4ZMtbt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 43283, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (202 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.7419791320338844, "std_reward": 0.8159019615514944, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T22:05:12.917499"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dda6de7270ccc3e9d564dceb13d67c12c05b165c4d75ba695a742e9bdd921a7
3
+ size 3056