Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,92 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
language:
|
4 |
+
- 'no'
|
5 |
+
pipeline_tag: text-classification
|
6 |
---
|
7 |
+
|
8 |
+
The Entailment Model is a pre-trained classifier to generate Entailment score for fact verification purpose.
|
9 |
+
|
10 |
+
Specifically, we fine-tune NorBERT on a collection of machine translated [VitaminC](https://huggingface.co/datasets/tals/vitaminc) dataset which is designed to determine whether the evidence supports assumption and is suitable for training a model on whether the given context entails the generated texts. Then, we employ the fine-tuned model as our Entailment model.
|
11 |
+
|
12 |
+
Prompt format:
|
13 |
+
```
|
14 |
+
{article}[SEP]{positive_sample}
|
15 |
+
```
|
16 |
+
Inference format:
|
17 |
+
```
|
18 |
+
{article}[SEP]{generated_text}
|
19 |
+
```
|
20 |
+
|
21 |
+
## Run the Model
|
22 |
+
```python
|
23 |
+
import torch
|
24 |
+
from transformers import AutoTokenizer, BertForSequenceClassification
|
25 |
+
|
26 |
+
model_id = "NorGLM/Entailment"
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, fast_tokenizer=True)
|
28 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
29 |
+
|
30 |
+
model = BertForSequenceClassification.from_pretrained(
|
31 |
+
model_id
|
32 |
+
)
|
33 |
+
```
|
34 |
+
|
35 |
+
## Inference Example
|
36 |
+
```python
|
37 |
+
from torch.utils.data import TensorDataset, DataLoader
|
38 |
+
|
39 |
+
def entailment_score(texts, references, generated_texts):
|
40 |
+
# Entailment: 1, Contradict: 0, Neutral: 2
|
41 |
+
# concatinate news articles and generated summaries as input
|
42 |
+
input_texts = [t + ' [SEP] '+ g for t,g in zip(texts, generated_texts)]
|
43 |
+
# Set the maximum sequence length according to NorBERT config.
|
44 |
+
MAX_LEN = 512
|
45 |
+
batch_size = 16
|
46 |
+
|
47 |
+
test_inputs = tokenizer(text=input_texts, add_special_tokens=True, return_attention_mask = True, return_tensors="pt", padding=True, truncation=True, max_length=MAX_LEN)
|
48 |
+
validation_data = TensorDataset(test_inputs['input_ids'],test_inputs['attention_mask'])
|
49 |
+
validation_dataloader = DataLoader(validation_data,batch_size=batch_size)
|
50 |
+
|
51 |
+
model.eval()
|
52 |
+
|
53 |
+
results = []
|
54 |
+
num_batches = 1
|
55 |
+
for batch in validation_dataloader:
|
56 |
+
# Add batch to GPU
|
57 |
+
batch = tuple(t.to(device) for t in batch)
|
58 |
+
# Unpack the inputs from our dataloader
|
59 |
+
b_input_ids, b_input_mask = batch
|
60 |
+
# Telling the model not to compute or store gradients, saving memory and speeding up validation
|
61 |
+
with torch.no_grad():
|
62 |
+
# Forward pass, calculate logit predictions
|
63 |
+
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)
|
64 |
+
|
65 |
+
# Move logits and labels to CPU
|
66 |
+
logits = logits[0].to('cpu').numpy()
|
67 |
+
pred_flat = np.argmax(logits, axis=1).flatten()
|
68 |
+
|
69 |
+
results.extend(pred_flat)
|
70 |
+
num_batches += 1
|
71 |
+
|
72 |
+
ent_ratio = results.count(1) / float(len(results))
|
73 |
+
neu_ratio = results.count(2) / float(len(results))
|
74 |
+
con_ratio = results.count(0) / float(len(results))
|
75 |
+
print("Entailment ratio: {}; Neutral ratio: {}; Contradict ratio: {}.".format(ent_ratio, neu_ratio, con_ratio))
|
76 |
+
return ent_ratio, neu_ratio, con_ratio
|
77 |
+
|
78 |
+
# load evaluation text
|
79 |
+
eva_file_name = <input csv file for evaluation>
|
80 |
+
eval_df = pd.read_csv(eva_file_name)
|
81 |
+
|
82 |
+
remove_str = 'Token indices sequence length is longer than 2048.'
|
83 |
+
eval_df = eval_df[eval_df!=remove_str]
|
84 |
+
eval_df = eval_df.dropna()
|
85 |
+
references = eval_df['positive_sample'].to_list()
|
86 |
+
hypo_list = eval_df['generated_text'].to_list()
|
87 |
+
articles = eval_df['article'].to_list()
|
88 |
+
ent_ratio, neu_ratio, con_ratio = entailment_score(articles, references, hypo_list)
|
89 |
+
```
|
90 |
+
|
91 |
+
|
92 |
+
|