OPEA
/

Safetensors
llama
4-bit precision
intel/auto-round
File size: 1,560 Bytes
16e4d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
{
  "_name_or_path": "/data5/models/Meta-Llama-3.1-70B-Instruct",
  "architectures": [
    "LlamaForCausalLM"
  ],
  "attention_bias": false,
  "attention_dropout": 0.0,
  "bos_token_id": 128000,
  "eos_token_id": [
    128001,
    128008,
    128009
  ],
  "hidden_act": "silu",
  "hidden_size": 8192,
  "initializer_range": 0.02,
  "intermediate_size": 28672,
  "max_position_embeddings": 131072,
  "mlp_bias": false,
  "model_type": "llama",
  "num_attention_heads": 64,
  "num_hidden_layers": 80,
  "num_key_value_heads": 8,
  "pretraining_tp": 1,
  "quantization_config": {
    "amp": true,
    "autoround_version": "0.3.1.dev",
    "backend": "auto_round:exllamav2",
    "bits": 4,
    "data_type": "int",
    "dataset": "NeelNanda/pile-10k",
    "enable_minmax_tuning": true,
    "enable_norm_bias_tuning": false,
    "enable_quanted_input": true,
    "gradient_accumulate_steps": 1,
    "group_size": 128,
    "iters": 1000,
    "low_gpu_mem_usage": true,
    "lr": 0.001,
    "minmax_lr": 0.001,
    "nsamples": 512,
    "quant_block_list": null,
    "quant_method": "intel/auto-round",
    "scale_dtype": "torch.float16",
    "seqlen": 2048,
    "sym": false,
    "train_bs": 8
  },
  "rms_norm_eps": 1e-05,
  "rope_scaling": {
    "factor": 8.0,
    "high_freq_factor": 4.0,
    "low_freq_factor": 1.0,
    "original_max_position_embeddings": 8192,
    "rope_type": "llama3"
  },
  "rope_theta": 500000.0,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.44.0",
  "use_cache": true,
  "vocab_size": 128256
}