Robotics
Adapters
File size: 12,150 Bytes
848d49a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Run benchmark using the `optimum-benchmark` library with some customization in `transformers`.

Assume we are under `transformers` root directory: (make sure the commits are valid commits)
```bash
python benchmark/benchmark.py --config-dir benchmark/config --config-name generation --commit=9b9c7f03da625b13643e99205c691fe046461724 --metrics=decode.latency.mean,per_token.latency.mean,per_token.throughput.value backend.model=google/gemma-2b benchmark.input_shapes.sequence_length=5,7 benchmark.input_shapes.batch_size=1,2 --multirun
```
"""

import argparse
import glob
import json
import os.path
import re
import tempfile
from contextlib import contextmanager
from pathlib import Path

from git import Repo

from huggingface_hub import HfApi

from optimum_benchmark import Benchmark
from optimum_benchmark_wrapper import main


PATH_TO_REPO = Path(__file__).parent.parent.resolve()


@contextmanager
def checkout_commit(repo: Repo, commit_id: str):
    """
    Context manager that checks out a given commit when entered, but gets back to the reference it was at on exit.
    Args:
        repo (`git.Repo`): A git repository (for instance the Transformers repo).
        commit_id (`str`): The commit reference to checkout inside the context manager.
    """
    current_head = repo.head.commit if repo.head.is_detached else repo.head.ref

    try:
        repo.git.checkout(commit_id)
        yield

    finally:
        repo.git.checkout(current_head)


def summarize(run_dir, metrics, expand_metrics=False):
    """Produce a summary for each optimum-benchmark launched job's output directory found in `run_dir`.

    Each summary's format is as follows (for `expand_metrics=False`):
    ```
    {
        "model": "google/gemma-2b",
        "commit": "3cd6ed22e4d49219f300f5055e71e3929aba20d7",
        "config": "benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5",
        "metrics": {
            "decode.latency.mean": 1.624666809082031,
            "per_token.latency.mean": 0.012843788806628804,
            "per_token.throughput.value": 77.85864553330948
        }
    }
    ```
    """
    reports = glob.glob(os.path.join(run_dir, "**/benchmark_report.json"), recursive=True)
    report_dirs = [str(Path(report).parent) for report in reports]

    summaries = []
    for report_dir in report_dirs:
        commit = re.search(r"/commit=([^/]+)", report_dir).groups()[0]

        if not os.path.isfile(os.path.join(report_dir, "benchmark.json")):
            continue
        benchmark = Benchmark.from_json(os.path.join(report_dir, "benchmark.json"))
        report = benchmark.report

        model = benchmark.config.backend["model"]

        # Ths looks like `benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5`.
        # (we rely on the usage of hydra's `${hydra.job.override_dirname}`.)
        benchmark_name = re.sub(f"backend.model={model},*", "", report_dir)
        benchmark_name = str(Path(benchmark_name).parts[-1])
        if benchmark_name.startswith("commit="):
            benchmark_name = benchmark.config.name

        metrics_values = {}
        # post-processing of report: show a few selected/important metric
        for metric in metrics:
            keys = metric.split(".")
            value = report
            current = metrics_values
            for key in keys:
                # Avoid KeyError when a user's specified metric has typo.
                # TODO: Give warnings.
                if key not in value:
                    continue
                value = value[key]

                if expand_metrics:
                    if isinstance(value, dict):
                        if key not in current:
                            current[key] = {}
                            current = current[key]
                    else:
                        current[key] = value

            if not expand_metrics:
                metrics_values[metric] = value

        # show some config information
        print(f"model: {model}")
        print(f"commit: {commit}")
        print(f"config: {benchmark_name}")
        if len(metrics_values) > 0:
            print("metrics:")
            if expand_metrics:
                print(metrics_values)
            else:
                for metric, value in metrics_values.items():
                    print(f"  - {metric}: {value}")
        print("-" * 80)

        summary = {
            "model": model,
            "commit": commit,
            "config": benchmark_name,
            "metrics": metrics_values,
        }
        summaries.append(summary)

        with open(os.path.join(report_dir, "summary.json"), "w") as fp:
            json.dump(summary, fp, indent=4)

    return summaries


def combine_summaries(summaries):
    """Combine a list of summary obtained from the function `summarize`.

    The combined summary's format is as follows:
    ```
    "google/gemma-2b": {
        "benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5": {
            "3cd6ed22e4d49219f300f5055e71e3929aba20d7": {
                "metrics": {"decode.latency.mean": 1.624666809082031}
            },
            "c97ee28b117c0abe8e08891f402065e4df6d72aa": {
                "metrics": {"decode.latency.mean": 1.6278163452148438}
            }
        },
        "benchmark.input_shapes.batch_size=2,benchmark.input_shapes.sequence_length=5": {
            "3cd6ed22e4d49219f300f5055e71e3929aba20d7": {
                "metrics": {"decode.latency.mean": 1.6947791748046876}
            },
            "c97ee28b117c0abe8e08891f402065e4df6d72aa": {
                "metrics": {
                    "decode.latency.mean": 1.6980519409179688}
            }
        }
    }
    ```
    """
    combined = {}
    for summary in summaries:
        model = summary["model"]
        config = summary["config"]
        commit = summary["commit"]

        if model not in combined:
            combined[model] = {}

        if config not in combined[model]:
            combined[model][config] = {}

        if commit not in combined[model][config]:
            combined[model][config][commit] = {"metrics": summary["metrics"]}

    with open(os.path.join(exp_run_dir, "summary.json"), "w") as fp:
        json.dump(combined, fp, indent=4)

    print(json.dumps(combined, indent=4))

    return combined


if __name__ == "__main__":

    def list_str(values):
        return values.split(",")

    parser = argparse.ArgumentParser()

    parser.add_argument("--config-dir", type=str, required=True, help="The path to the config directory.")
    parser.add_argument("--config-name", type=str, required=True, help="The config name.")

    # arguments specific to this wrapper for our own customization
    parser.add_argument("--ensure_empty", type=bool, default=True, help="If to create a temporary directory.")
    parser.add_argument(
        "--commit",
        type=list_str,
        default="",
        help="Comma-separated list of branch names and/or commit sha values on which the benchmark will run. If `diff` is specified, it will run on both the current head and the `main` branch.",
    )
    parser.add_argument("--metrics", type=str, help="The metrics to be included in the summary.")

    parser.add_argument("--repo_id", type=str, default=None, help="The repository to which the file will be uploaded.")
    parser.add_argument("--path_in_repo", type=str, default=None, help="Relative filepath in the repo.")
    parser.add_argument("--token", type=str, default=None, help="A valid user access token (string).")

    args, optimum_benchmark_args = parser.parse_known_args()

    repo = Repo(PATH_TO_REPO)

    metrics = [
        "prefill.latency.mean",
        "prefill.throughput.value",
        "decode.latency.mean",
        "decode.throughput.value",
        "per_token.latency.mean",
        "per_token.throughput.value",
    ]
    if args.metrics is not None:
        metrics = args.metrics.split(",")

    # Get `backend.model` in a hacky way: We want to control the experiment flow manually.
    models = [""]
    for idx, arg in enumerate(optimum_benchmark_args):
        if arg.startswith("backend.model="):
            models = arg[len("backend.model=") :]
            models = models.split(",")
            break
    optimum_benchmark_args = [arg for arg in optimum_benchmark_args if not arg.startswith("backend.model=")]

    # Get the commit(s)
    current_head = str(repo.head.commit) if repo.head.is_detached else str(repo.head.ref)
    commits = [x for x in args.commit if x != ""]
    if len(commits) == 0:
        commits = [current_head]
    elif len(commits) == 1 and commits[0] == "diff":
        # compare to `main`
        commits = ["main", current_head]

    # Get the specified run directory
    run_dir_arg_idx, run_dir = -1, None
    sweep_dir_arg_idx, sweep_dir = -1, None
    for idx, arg in enumerate(optimum_benchmark_args):
        if arg.startswith("hydra.run.dir="):
            run_dir = arg[len("hydra.run.dir=") :]
            run_dir_arg_idx = idx
        elif arg.startswith("hydra.sweep.dir="):
            sweep_dir = arg[len("hydra.sweep.dir=") :]
            sweep_dir_arg_idx = idx
    exp_run_dir, arg_dix, arg_name = (
        (sweep_dir, sweep_dir_arg_idx, "hydra.sweep.dir")
        if "--multirun" in optimum_benchmark_args
        else (run_dir, run_dir_arg_idx, "hydra.run.dir")
    )

    # TODO: not hardcoded
    if exp_run_dir is None and args.ensure_empty:
        exp_run_dir = "_benchmark"

    if args.ensure_empty:
        os.makedirs(exp_run_dir, exist_ok=True)
        exp_run_dir = tempfile.mkdtemp(dir=exp_run_dir)

    run_summaries = []
    for commit in commits:
        with checkout_commit(repo, commit):
            commit = str(repo.head.commit)

            commit_run_dir = exp_run_dir
            if exp_run_dir is not None:
                commit_run_dir = os.path.join(exp_run_dir, rf"commit\={commit}")

            print(f"Run benchmark on commit: {commit}")

            for model in models:
                model_arg = [f"backend.model={model}"] if model != "" else []
                dir_args = []
                if commit_run_dir is not None:
                    if arg_dix > -1:
                        optimum_benchmark_args[arg_dix] = f"{arg_name}={commit_run_dir}"
                    else:
                        dir_args = [
                            f"hydra.sweep.dir={commit_run_dir}",
                            f"hydra.run.dir={commit_run_dir}/" + "${hydra.job.override_dirname}",
                        ]
                main(args.config_dir, args.config_name, model_arg + dir_args + optimum_benchmark_args)

            if commit_run_dir is not None:
                # Need to remove the `\` character
                summaries = summarize(commit_run_dir.replace("\\", ""), metrics)
                run_summaries.extend(summaries)

    # aggregate the information across the commits
    if exp_run_dir is not None:
        with open(os.path.join(exp_run_dir, "summaries.json"), "w") as fp:
            json.dump(run_summaries, fp, indent=4)

        combined_summary = combine_summaries(run_summaries)

        if args.repo_id is not None and args.path_in_repo is not None:
            # Upload to Hub
            api = HfApi()
            api.upload_folder(
                folder_path=exp_run_dir,
                path_in_repo=args.path_in_repo,
                repo_id=args.repo_id,
                repo_type="dataset",
                token=args.token,
            )