Text Classification
Transformers
PyTorch
English
deberta-v2
reward-model
reward_model
RLHF
Inference Endpoints
theblackcat102 commited on
Commit
6701392
·
1 Parent(s): 649408c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -0
README.md CHANGED
@@ -33,6 +33,19 @@ All models are train on these dataset with a same split seed across datasets (if
33
  - [synthetic-instruct-gptj-pairwise](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise)
34
 
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  # Performance
37
 
38
  Validation split accuracy
 
33
  - [synthetic-instruct-gptj-pairwise](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise)
34
 
35
 
36
+ # How to use
37
+
38
+ ```
39
+ from transformer import AutoModelForSequenceClassification, AutoTokenizer
40
+ reward_name = "OpenAssistant/reward-model-deberta-v3-base"
41
+ rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name)
42
+ question, answer = "Explain nuclear fusion like I am five", "Nuclear fusion is the process by which two or more protons and neutrons combine to form a single nucleus. It is a very important process in the universe, as it is the source of energy for stars and galaxies. Nuclear fusion is also a key process in the production of energy for nuclear power plants."
43
+ inputs = tokenizer(question, answer, return_tensors='pt')
44
+ score = rank_model(**inputs).logits[0].cpu().detach()
45
+ print(score)
46
+ ```
47
+
48
+
49
  # Performance
50
 
51
  Validation split accuracy