zjowowen commited on
Commit
313e72f
·
1 Parent(s): 038867f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +18 -15
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  type: OpenAI/Gym/ClassicControl-Pendulum-v1
22
  metrics:
23
  - type: mean_reward
24
- value: -243.93 +/- 144.62
25
  name: mean_reward
26
  ---
27
 
@@ -67,10 +67,10 @@ import torch
67
 
68
  # Pull model from files which are git cloned from huggingface
69
  policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu"))
70
- cfg = EasyDict(Config.file_to_dict("policy_config.py"))
71
  # Instantiate the agent
72
  agent = SACAgent(
73
- env="pendulum", exp_name="Pendulum-v1-SAC", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
74
  )
75
  # Continue training
76
  agent.train(step=5000)
@@ -98,7 +98,7 @@ from huggingface_ding import pull_model_from_hub
98
  policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/Pendulum-v1-SAC")
99
  # Instantiate the agent
100
  agent = SACAgent(
101
- env="pendulum",
102
  exp_name="Pendulum-v1-SAC",
103
  cfg=cfg.exp_config,
104
  policy_state_dict=policy_state_dict
@@ -128,7 +128,7 @@ from ding.bonus import SACAgent
128
  from huggingface_ding import push_model_to_hub
129
 
130
  # Instantiate the agent
131
- agent = SACAgent("pendulum", exp_name="Pendulum-v1-SAC")
132
  # Train the agent
133
  return_ = agent.train(step=int(4000000), collector_env_num=8, evaluator_env_num=8)
134
  # Push model to huggingface hub
@@ -145,7 +145,8 @@ push_model_to_hub(
145
  usage_file_by_git_clone="./sac/pendulum_sac_deploy.py",
146
  usage_file_by_huggingface_ding="./sac/pendulum_sac_download.py",
147
  train_file="./sac/pendulum_sac.py",
148
- repo_id="OpenDILabCommunity/Pendulum-v1-SAC"
 
149
  )
150
 
151
  ```
@@ -170,10 +171,11 @@ exp_config = {
170
  'cfg_type': 'BaseEnvManagerDict'
171
  },
172
  'stop_value': -250,
 
 
173
  'collector_env_num': 10,
174
  'evaluator_env_num': 8,
175
- 'act_scale': True,
176
- 'n_evaluator_episode': 8
177
  },
178
  'policy': {
179
  'model': {
@@ -226,9 +228,10 @@ exp_config = {
226
  'render_freq': -1,
227
  'mode': 'train_iter'
228
  },
 
229
  'cfg_type': 'InteractionSerialEvaluatorDict',
230
- 'n_episode': 8,
231
- 'stop_value': -250
232
  }
233
  },
234
  'other': {
@@ -237,7 +240,7 @@ exp_config = {
237
  }
238
  },
239
  'on_policy': False,
240
- 'cuda': False,
241
  'multi_gpu': False,
242
  'bp_update_sync': True,
243
  'traj_len_inf': False,
@@ -274,14 +277,14 @@ exp_config = {
274
  - **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/Pendulum-v1-SAC/blob/main/policy_config.py)
275
  - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/Pendulum-v1-SAC/blob/main/replay.mp4)
276
  <!-- Provide the size information for the model. -->
277
- - **Parameters total size:** 202.52 KB
278
- - **Last Update Date:** 2023-04-30
279
 
280
  ## Environments
281
  <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
282
  - **Benchmark:** OpenAI/Gym/ClassicControl
283
  - **Task:** Pendulum-v1
284
  - **Gym version:** 0.25.1
285
- - **DI-engine version:** v0.4.7
286
- - **PyTorch version:** 1.7.1
287
  - **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/pendulum.html)
 
21
  type: OpenAI/Gym/ClassicControl-Pendulum-v1
22
  metrics:
23
  - type: mean_reward
24
+ value: -231.49 +/- 235.68
25
  name: mean_reward
26
  ---
27
 
 
67
 
68
  # Pull model from files which are git cloned from huggingface
69
  policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu"))
70
+ cfg = EasyDict(Config.file_to_dict("policy_config.py").cfg_dict)
71
  # Instantiate the agent
72
  agent = SACAgent(
73
+ env_id="Pendulum-v1", exp_name="Pendulum-v1-SAC", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
74
  )
75
  # Continue training
76
  agent.train(step=5000)
 
98
  policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/Pendulum-v1-SAC")
99
  # Instantiate the agent
100
  agent = SACAgent(
101
+ env_id="Pendulum-v1",
102
  exp_name="Pendulum-v1-SAC",
103
  cfg=cfg.exp_config,
104
  policy_state_dict=policy_state_dict
 
128
  from huggingface_ding import push_model_to_hub
129
 
130
  # Instantiate the agent
131
+ agent = SACAgent(env_id="Pendulum-v1", exp_name="Pendulum-v1-SAC")
132
  # Train the agent
133
  return_ = agent.train(step=int(4000000), collector_env_num=8, evaluator_env_num=8)
134
  # Push model to huggingface hub
 
145
  usage_file_by_git_clone="./sac/pendulum_sac_deploy.py",
146
  usage_file_by_huggingface_ding="./sac/pendulum_sac_download.py",
147
  train_file="./sac/pendulum_sac.py",
148
+ repo_id="OpenDILabCommunity/Pendulum-v1-SAC",
149
+ create_repo=False
150
  )
151
 
152
  ```
 
171
  'cfg_type': 'BaseEnvManagerDict'
172
  },
173
  'stop_value': -250,
174
+ 'n_evaluator_episode': 8,
175
+ 'env_id': 'Pendulum-v1',
176
  'collector_env_num': 10,
177
  'evaluator_env_num': 8,
178
+ 'act_scale': True
 
179
  },
180
  'policy': {
181
  'model': {
 
228
  'render_freq': -1,
229
  'mode': 'train_iter'
230
  },
231
+ 'figure_path': None,
232
  'cfg_type': 'InteractionSerialEvaluatorDict',
233
+ 'stop_value': -250,
234
+ 'n_episode': 8
235
  }
236
  },
237
  'other': {
 
240
  }
241
  },
242
  'on_policy': False,
243
+ 'cuda': True,
244
  'multi_gpu': False,
245
  'bp_update_sync': True,
246
  'traj_len_inf': False,
 
277
  - **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/Pendulum-v1-SAC/blob/main/policy_config.py)
278
  - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/Pendulum-v1-SAC/blob/main/replay.mp4)
279
  <!-- Provide the size information for the model. -->
280
+ - **Parameters total size:** 405.03 KB
281
+ - **Last Update Date:** 2023-09-23
282
 
283
  ## Environments
284
  <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
285
  - **Benchmark:** OpenAI/Gym/ClassicControl
286
  - **Task:** Pendulum-v1
287
  - **Gym version:** 0.25.1
288
+ - **DI-engine version:** v0.4.9
289
+ - **PyTorch version:** 2.0.1+cu117
290
  - **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/pendulum.html)