czczup commited on
Commit
58f1bb8
·
verified ·
1 Parent(s): 23ac785

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -41
README.md CHANGED
@@ -11,10 +11,6 @@ language:
11
  - multilingual
12
  tags:
13
  - internvl
14
- - vision
15
- - ocr
16
- - multi-image
17
- - video
18
  - custom_code
19
  ---
20
 
@@ -54,35 +50,33 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
54
 
55
  ### Image Benchmarks
56
 
57
- | Benchmark | PaliGemma-3B | Phi-3-Vision | Mini-InternVL-2B-1-5 | InternVL2-2B |
58
- | :--------------------------: | :----------: | :----------: | :------------------: | :----------: |
59
- | Model Size | 2.9B | 4.2B | 2.2B | 2.2B |
60
- | | | | | |
61
- | DocVQA<sub>test</sub> | - | - | 85.0 | 86.9 |
62
- | ChartQA<sub>test</sub> | - | 81.4 | 74.8 | 76.2 |
63
- | InfoVQA<sub>test</sub> | - | - | 55.4 | 58.9 |
64
- | TextVQA<sub>val</sub> | 68.1 | 70.9 | 70.5 | 73.4 |
65
- | OCRBench | 614 | 639 | 654 | 784 |
66
- | MME<sub>sum</sub> | 1686.1 | 1508.0 | 1901.5 | 1876.8 |
67
- | RealWorldQA | 55.2 | 58.8 | 57.9 | 57.3 |
68
- | AI2D<sub>test</sub> | 68.3 | 76.7 | 69.8 | 74.1 |
69
- | MMMU<sub>val</sub> | 34.9 | 46.1 | 37.4 | 36.3 |
70
- | MMBench-EN<sub>test</sub> | 71.0 | 73.6 | 70.9 | 73.2 |
71
- | MMBench-CN<sub>test</sub> | 63.6 | - | 66.2 | 70.9 |
72
- | CCBench<sub>dev</sub> | 29.6 | 24.1 | 63.5 | 74.7 |
73
- | MMVet<sub>GPT-4-0613</sub> | - | - | 39.3 | 44.6 |
74
- | MMVet<sub>GPT-4-Turbo</sub> | 33.1 | 44.1 | 35.5 | 39.5 |
75
- | SEED-Image | 69.6 | 70.9 | 69.8 | 71.6 |
76
- | HallBench<sub>avg</sub> | 32.2 | 39.0 | 37.5 | 37.9 |
77
- | MathVista<sub>testmini</sub> | 28.7 | 44.5 | 41.1 | 46.3 |
78
- | OpenCompass<sub>avg</sub> | 46.6 | 53.6 | 49.8 | 54.0 |
79
 
80
  - For more details and evaluation reproduction, please refer to our [Evaluation Guide](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html).
81
 
82
  - We simultaneously use [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet (GPT-4-0613), and SEED-Image were tested using the InternVL repository. MMMU, OCRBench, RealWorldQA, HallBench, MMVet (GPT-4-Turbo), and MathVista were evaluated using the VLMEvalKit.
83
 
84
- - Please note that evaluating the same model using different testing toolkits like [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
85
-
86
  ### Video Benchmarks
87
 
88
  | Benchmark | VideoChat2-Phi3 | VideoChat2-HD-Mistral | Mini-InternVL-2B-1-5 | InternVL2-2B |
@@ -119,16 +113,10 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
119
 
120
  Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
121
 
122
- ### Invitation to Evaluate InternVL
123
-
124
- We welcome MLLM benchmark developers to assess our InternVL1.5 and InternVL2 series models. If you need to add your evaluation results here, please contact me at [[email protected]](mailto:[email protected]).
125
-
126
  ## Quick Start
127
 
128
  We provide an example code to run InternVL2-2B using `transformers`.
129
 
130
- We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
131
-
132
  > Please use transformers>=4.37.2 to ensure the model works normally.
133
 
134
  ### Model Loading
@@ -609,7 +597,7 @@ print(response)
609
 
610
  ## License
611
 
612
- This project is released under the MIT license, while InternLM2 is licensed under the Apache-2.0 license.
613
 
614
  ## Citation
615
 
@@ -622,16 +610,16 @@ If you find this project useful in your research, please consider citing:
622
  journal={arXiv preprint arXiv:2410.16261},
623
  year={2024}
624
  }
625
- @article{chen2023internvl,
626
- title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
627
- author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
628
- journal={arXiv preprint arXiv:2312.14238},
629
- year={2023}
630
- }
631
  @article{chen2024far,
632
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
633
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
634
  journal={arXiv preprint arXiv:2404.16821},
635
  year={2024}
636
  }
 
 
 
 
 
 
637
  ```
 
11
  - multilingual
12
  tags:
13
  - internvl
 
 
 
 
14
  - custom_code
15
  ---
16
 
 
50
 
51
  ### Image Benchmarks
52
 
53
+ | Benchmark | PaliGemma-3B | Mini-InternVL-2B-1-5 | InternVL2-2B |
54
+ | :--------------------------: | :----------: | :------------------: | :----------: |
55
+ | Model Size | 2.9B | 2.2B | 2.2B |
56
+ | | | | |
57
+ | DocVQA<sub>test</sub> | - | 85.0 | 86.9 |
58
+ | ChartQA<sub>test</sub> | - | 74.8 | 76.2 |
59
+ | InfoVQA<sub>test</sub> | - | 55.4 | 58.9 |
60
+ | TextVQA<sub>val</sub> | 68.1 | 70.5 | 73.4 |
61
+ | OCRBench | 614 | 654 | 784 |
62
+ | MME<sub>sum</sub> | 1686.1 | 1901.5 | 1876.8 |
63
+ | RealWorldQA | 55.2 | 57.9 | 57.3 |
64
+ | AI2D<sub>test</sub> | 68.3 | 69.8 | 74.1 |
65
+ | MMMU<sub>val</sub> | 34.9 | 37.4 | 36.3 |
66
+ | MMBench-EN<sub>test</sub> | 71.0 | 70.9 | 73.2 |
67
+ | MMBench-CN<sub>test</sub> | 63.6 | 66.2 | 70.9 |
68
+ | CCBench<sub>dev</sub> | 29.6 | 63.5 | 74.7 |
69
+ | MMVet<sub>GPT-4-0613</sub> | - | 39.3 | 44.6 |
70
+ | MMVet<sub>GPT-4-Turbo</sub> | 33.1 | 35.5 | 39.5 |
71
+ | SEED-Image | 69.6 | 69.8 | 71.6 |
72
+ | HallBench<sub>avg</sub> | 32.2 | 37.5 | 37.9 |
73
+ | MathVista<sub>testmini</sub> | 28.7 | 41.1 | 46.3 |
74
+ | OpenCompass<sub>avg</sub> | 46.6 | 49.8 | 54.0 |
75
 
76
  - For more details and evaluation reproduction, please refer to our [Evaluation Guide](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html).
77
 
78
  - We simultaneously use [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet (GPT-4-0613), and SEED-Image were tested using the InternVL repository. MMMU, OCRBench, RealWorldQA, HallBench, MMVet (GPT-4-Turbo), and MathVista were evaluated using the VLMEvalKit.
79
 
 
 
80
  ### Video Benchmarks
81
 
82
  | Benchmark | VideoChat2-Phi3 | VideoChat2-HD-Mistral | Mini-InternVL-2B-1-5 | InternVL2-2B |
 
113
 
114
  Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
115
 
 
 
 
 
116
  ## Quick Start
117
 
118
  We provide an example code to run InternVL2-2B using `transformers`.
119
 
 
 
120
  > Please use transformers>=4.37.2 to ensure the model works normally.
121
 
122
  ### Model Loading
 
597
 
598
  ## License
599
 
600
+ This project is released under the MIT License. This project uses the pre-trained internlm2-chat-1_8b as a component, which is licensed under the Apache License 2.0.
601
 
602
  ## Citation
603
 
 
610
  journal={arXiv preprint arXiv:2410.16261},
611
  year={2024}
612
  }
 
 
 
 
 
 
613
  @article{chen2024far,
614
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
615
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
616
  journal={arXiv preprint arXiv:2404.16821},
617
  year={2024}
618
  }
619
+ @article{chen2023internvl,
620
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
621
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
622
+ journal={arXiv preprint arXiv:2312.14238},
623
+ year={2023}
624
+ }
625
  ```