sylwia-kuros commited on
Commit
998eb36
·
verified ·
1 Parent(s): 3e44b9b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ <!-- Model name used as model card title -->
6
+ # TinyLlama-1.1B-Chat-v1.0-int8-ov
7
+ <!-- Original model reference -->
8
+ * Model creator: [TinyLlama](https://huggingface.co/TinyLlama)
9
+ * Original model: [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
10
+
11
+ <!-- Description of converted model -->
12
+ ## Description
13
+
14
+ <!-- Comment and reference on NNCF applicable only for INT8 and INT4 models -->
15
+ This is [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
16
+
17
+ ## Quantization Parameters
18
+
19
+ Weight compression was performed using `nncf.compress_weights` with the following parameters:
20
+
21
+
22
+ * mode: **INT8_ASYM**
23
+ * ratio: **1.0**
24
+
25
+ For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
26
+
27
+ ## Compatibility
28
+
29
+ The provided OpenVINO™ IR model is compatible with:
30
+
31
+ * OpenVINO version 2024.1.0 and higher
32
+ * Optimum Intel 1.16.0 and higher
33
+
34
+ ## Running Model Inference
35
+
36
+ <!-- Example model usage -->
37
+
38
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
39
+
40
+ ```
41
+ pip install optimum[openvino]
42
+ ```
43
+
44
+ 2. Run model inference:
45
+
46
+ <!-- Usage example can be adopted from original model usage example -->
47
+
48
+ ```
49
+ from transformers import AutoTokenizer
50
+ from optimum.intel.openvino import OVModelForCausalLM
51
+
52
+ model_id = "OpenVINO/TinyLlama-1.1B-Chat-v1.0-fp16-ov"
53
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
54
+ model = OVModelForCausalLM.from_pretrained(model_id)
55
+
56
+ inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
57
+
58
+ outputs = model.generate(**inputs, max_length=200)
59
+ text = tokenizer.batch_decode(outputs)[0]
60
+ print(text)
61
+ ```
62
+
63
+ For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
64
+
65
+ ## Legal information
66
+
67
+ <!-- Note about original model license -->
68
+ The original model is distributed under [apache-2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0).
69
+
70
+ ## Disclaimer
71
+
72
+ Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.