File size: 2,835 Bytes
77e7b01
 
847a051
9c8ab5b
 
 
77e7b01
58aa9ce
847a051
9c8ab5b
77e7b01
 
9c8ab5b
77e7b01
58aa9ce
 
 
 
847a051
 
58aa9ce
 
 
847a051
77e7b01
 
 
 
847a051
 
77e7b01
847a051
77e7b01
 
 
 
847a051
77e7b01
 
 
 
 
 
 
 
58aa9ce
847a051
77e7b01
58aa9ce
847a051
58aa9ce
847a051
 
 
58aa9ce
 
847a051
58aa9ce
77e7b01
 
847a051
77e7b01
 
 
847a051
7f0c6fe
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
license_link: https://choosealicense.com/licenses/apache-2.0/
base_model:
- Salesforce/codegen25-7b-multi_P
base_model_relation: quantized
---
# codegen25-7b-multi-int8-ov
* Model creator: [Salesforce](https://huggingface.co/Salesforce)
 * Original model: [codegen25-7b-multi_P](https://huggingface.co/Salesforce/codegen25-7b-multi_P)

## Description
This is [codegen25-7b-multi_P](https://huggingface.co/Salesforce/codegen25-7b-multi_P) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).

## Quantization Parameters

Weight compression was performed using `nncf.compress_weights` with the following parameters:

* mode: **int8_asym**
* ratio: **1**

For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).


## Compatibility

The provided OpenVINO™ IR model is compatible with:

* OpenVINO version 2024.4.0 and higher
* Optimum Intel 1.20.0 and higher

## Running Model Inference

1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:

```
pip install optimum[openvino]
```

2. Run model inference:

```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM

model_id = "OpenVINO/codegen25-7b-multi-int8-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)

inputs = tokenizer("What is OpenVINO?", return_tensors="pt")

outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```

For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).

## Limitations

Check the original model card for [original model card](https://huggingface.co/Salesforce/codegen25-7b-multi) for limitations.

## Legal information

The original model is distributed under [apache-2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/Salesforce/codegen25-7b-multi).

## Disclaimer

Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.