File size: 2,707 Bytes
53b9ea5 2a4ebca e1d97ec 53b9ea5 2a4ebca 53b9ea5 2a4ebca 53b9ea5 2a4ebca 53b9ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: gemma
license_link: https://choosealicense.com/licenses/gemma/
base_model: google/gemma-2b
base_model_relation: quantized
---
# gemma-2b-int4-ov
* Model creator: [google](https://huggingface.co/google)
* Original model: [gemma-2b](https://huggingface.co/google/gemma-2b)
## Description
This is [gemma-2b](https://huggingface.co/google/gemma-2b) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
## Quantization Parameters
Weight compression was performed using `nncf.compress_weights` with the following parameters:
* mode: **int4_asym**
* ratio: **1**
* group_size: **128**
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2024.5.0 and higher
* Optimum Intel 1.21.0 and higher
## Running Model Inference
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "OpenVINO/gemma-2b-int4-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
## Limitations
Check the original model card for [original model card](https://huggingface.co/google/gemma-2b) for limitations.
## Legal information
The original model is distributed under [gemma](https://choosealicense.com/licenses/gemma/) license. More details can be found in [original model card](https://huggingface.co/google/gemma-2b).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|