File size: 3,233 Bytes
dba9d60 b35c0bb dba9d60 b5d9cef dba9d60 e6ee605 dba9d60 e6ee605 8870b9d e6ee605 dba9d60 5e67b4a b35c0bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: mit
license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE
language:
- en
base_model:
- microsoft/phi-2
---
# phi-2-fp16-ov
* Model creator: [Microsoft](https://huggingface.co/microsoft)
* Original model: [phi-2](https://huggingface.co/microsoft/phi-2)
## Description
This is [phi-2](https://huggingface.co/microsoft/phi-2) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to FP16.
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2024.1.0 and higher
* Optimum Intel 1.17.0 and higher
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "OpenVINO/phi-2-fp16-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```
2. Download model from HuggingFace Hub
```
import huggingface_hub as hf_hub
model_id = "OpenVINO/phi-2-fp16-ov"
model_path = "phi-2-fp16-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path)
```
3. Run model inference:
```
import openvino_genai as ov_genai
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
print(pipe.generate("What is OpenVINO?", max_length=200))
```
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
## Limitations
Check the original model card for [limitations](https://huggingface.co/microsoft/phi-2#limitations-of-phi-2).
## Legal information
The original model is distributed under [MIT](https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE) license. More details can be found in [original model card](https://huggingface.co/microsoft/phi-2).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights. |