Stevross commited on
Commit
c0cdec9
·
1 Parent(s): 67cf25d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -13,7 +13,7 @@ thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources
13
  # Model Card
14
  ## Summary
15
 
16
- This model, Astrid-1B-1, is a GPT-NeoX model for causal language modeling, designed to generate human-like text.
17
  It's part of our mission to make AI technology accessible to everyone, focusing on personalization, data privacy, and transparent AI governance.
18
  Trained in English, it's a versatile tool for a variety of applications.
19
  This model is one of the many models available on our platform, and we currently have a 1B and 7B open-source model.
@@ -37,7 +37,7 @@ import torch
37
  from transformers import pipeline
38
 
39
  generate_text = pipeline(
40
- model="Stevross/Astrid-1B-CPU",
41
  torch_dtype="auto",
42
  trust_remote_code=True,
43
  use_fast=True,
@@ -75,13 +75,13 @@ from h2oai_pipeline import H2OTextGenerationPipeline
75
  from transformers import AutoModelForCausalLM, AutoTokenizer
76
 
77
  tokenizer = AutoTokenizer.from_pretrained(
78
- "Stevross/Astrid-1B-CPU",
79
  use_fast=True,
80
  padding_side="left",
81
  trust_remote_code=True,
82
  )
83
  model = AutoModelForCausalLM.from_pretrained(
84
- "Stevross/Astrid-1B-CPU",
85
  torch_dtype="auto",
86
  device_map={"": "cuda:0"},
87
  trust_remote_code=True,
@@ -107,7 +107,7 @@ You may also construct the pipeline from the loaded model and tokenizer yourself
107
  ```python
108
  from transformers import AutoModelForCausalLM, AutoTokenizer
109
 
110
- model_name = "Stevross/Astrid-1B-CPU" # either local folder or huggingface model name
111
  # Important: The prompt needs to be in the same format the model was trained with.
112
  # You can find an example prompt in the experiment logs.
113
  prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
@@ -181,7 +181,7 @@ This model was trained using H2O LLM Studio and with the configuration in [cfg.y
181
  Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
182
 
183
  ```bash
184
- CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=Stevross/Astrid-1B-CPU --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
185
  ```
186
 
187
 
 
13
  # Model Card
14
  ## Summary
15
 
16
+ This model, Astrid-1B-CPU, is a GPT-NeoX model for causal language modeling, designed to generate human-like text.
17
  It's part of our mission to make AI technology accessible to everyone, focusing on personalization, data privacy, and transparent AI governance.
18
  Trained in English, it's a versatile tool for a variety of applications.
19
  This model is one of the many models available on our platform, and we currently have a 1B and 7B open-source model.
 
37
  from transformers import pipeline
38
 
39
  generate_text = pipeline(
40
+ model="PAIXAI/Astrid-1B-CPU",
41
  torch_dtype="auto",
42
  trust_remote_code=True,
43
  use_fast=True,
 
75
  from transformers import AutoModelForCausalLM, AutoTokenizer
76
 
77
  tokenizer = AutoTokenizer.from_pretrained(
78
+ "PAIXAI/Astrid-1B-CPU",
79
  use_fast=True,
80
  padding_side="left",
81
  trust_remote_code=True,
82
  )
83
  model = AutoModelForCausalLM.from_pretrained(
84
+ "PAIXAI/Astrid-1B-CPU",
85
  torch_dtype="auto",
86
  device_map={"": "cuda:0"},
87
  trust_remote_code=True,
 
107
  ```python
108
  from transformers import AutoModelForCausalLM, AutoTokenizer
109
 
110
+ model_name = "PAIXAI/Astrid-1B-CPU" # either local folder or huggingface model name
111
  # Important: The prompt needs to be in the same format the model was trained with.
112
  # You can find an example prompt in the experiment logs.
113
  prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
 
181
  Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
182
 
183
  ```bash
184
+ CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=PAIXAI/Astrid-1B-CPU --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
185
  ```
186
 
187