Plim commited on
Commit
43ee0f8
1 Parent(s): b87f5cd

ignore ipybn_checkpoints

Browse files
.gitignore CHANGED
@@ -1,3 +1,5 @@
1
  checkpoint-*/
2
 
 
 
3
  wandb
 
1
  checkpoint-*/
2
 
3
+ .ipynb_checkpoints/
4
+
5
  wandb
.ipynb_checkpoints/eval-checkpoint.py DELETED
@@ -1,128 +0,0 @@
1
- #!/usr/bin/env python3
2
- import argparse
3
- import re
4
- from typing import Dict
5
-
6
- from datasets import Audio, Dataset, load_dataset, load_metric
7
-
8
- from transformers import AutoFeatureExtractor, pipeline
9
-
10
-
11
- def log_results(result: Dataset, args: Dict[str, str]):
12
- """DO NOT CHANGE. This function computes and logs the result metrics."""
13
-
14
- log_outputs = args.log_outputs
15
- dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
16
-
17
- # load metric
18
- wer = load_metric("wer")
19
- cer = load_metric("cer")
20
-
21
- # compute metrics
22
- wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
23
- cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
24
-
25
- # print & log results
26
- result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
27
- print(result_str)
28
-
29
- with open(f"{dataset_id}_eval_results.txt", "w") as f:
30
- f.write(result_str)
31
-
32
- # log all results in text file. Possibly interesting for analysis
33
- if log_outputs is not None:
34
- pred_file = f"log_{dataset_id}_predictions.txt"
35
- target_file = f"log_{dataset_id}_targets.txt"
36
-
37
- with open(pred_file, "w") as p, open(target_file, "w") as t:
38
-
39
- # mapping function to write output
40
- def write_to_file(batch, i):
41
- p.write(f"{i}" + "\n")
42
- p.write(batch["prediction"] + "\n")
43
- t.write(f"{i}" + "\n")
44
- t.write(batch["target"] + "\n")
45
-
46
- result.map(write_to_file, with_indices=True)
47
-
48
-
49
- def normalize_text(text: str) -> str:
50
- """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
51
-
52
- chars_to_ignore_regex = '[^a-zàâäçéèêëîïôöùûüÿ\'’ ]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
53
-
54
- text = re.sub(chars_to_ignore_regex, "", text.lower()).replace('’', "'")
55
-
56
- # In addition, we can normalize the target text, e.g. removing new lines characters etc...
57
- # note that order is important here!
58
- token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
59
-
60
- for t in token_sequences_to_ignore:
61
- text = " ".join(text.split(t))
62
-
63
- return text
64
-
65
-
66
- def main(args):
67
- # load dataset
68
- dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
69
-
70
- # for testing: only process the first two examples as a test
71
- # dataset = dataset.select(range(10))
72
-
73
- # load processor
74
- feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
75
- sampling_rate = feature_extractor.sampling_rate
76
-
77
- # resample audio
78
- dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
79
-
80
- # load eval pipeline
81
- asr = pipeline("automatic-speech-recognition", model=args.model_id)
82
-
83
- # map function to decode audio
84
- def map_to_pred(batch):
85
- prediction = asr(
86
- batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
87
- )
88
-
89
- batch["prediction"] = prediction["text"]
90
- batch["target"] = normalize_text(batch["sentence"])
91
- return batch
92
-
93
- # run inference on all examples
94
- result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
95
-
96
- # compute and log_results
97
- # do not change function below
98
- log_results(result, args)
99
-
100
-
101
- if __name__ == "__main__":
102
- parser = argparse.ArgumentParser()
103
-
104
- parser.add_argument(
105
- "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
106
- )
107
- parser.add_argument(
108
- "--dataset",
109
- type=str,
110
- required=True,
111
- help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
112
- )
113
- parser.add_argument(
114
- "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
115
- )
116
- parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
117
- parser.add_argument(
118
- "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
119
- )
120
- parser.add_argument(
121
- "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
122
- )
123
- parser.add_argument(
124
- "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
125
- )
126
- args = parser.parse_args()
127
-
128
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/run-checkpoint.sh DELETED
@@ -1,37 +0,0 @@
1
- export WANDB_PROJECT="xls-r-300-fr"
2
- python run_speech_recognition_ctc.py \
3
- --activation_dropout="0.1" \
4
- --dataset_name="mozilla-foundation/common_voice_7_0" \
5
- --dataset_config_name="fr" \
6
- --eval_steps="500" \
7
- --evaluation_strategy="steps" \
8
- --feat_proj_dropout="0.0" \
9
- --freeze_feature_encoder \
10
- --fp16 \
11
- --gradient_accumulation_steps="8" \
12
- --gradient_checkpointing \
13
- --group_by_length \
14
- --layerdrop="0.0" \
15
- --learning_rate="7.5e-5" \
16
- --length_column_name="input_length" \
17
- --load_best_model_at_end \
18
- --logging_steps="100" \
19
- --mask_feature_length="64" \
20
- --mask_feature_prob="0.25" \
21
- --mask_time_length="10" \
22
- --mask_time_prob="0.75" \
23
- --model_name_or_path="facebook/wav2vec2-xls-r-300m" \
24
- --num_train_epochs="2.0" \
25
- --output_dir="./" \
26
- --overwrite_output_dir \
27
- --per_device_train_batch_size="16" \
28
- --per_device_eval_batch_size="16" \
29
- --preprocessing_num_workers="4" \
30
- --push_to_hub \
31
- --report_to="wandb" \
32
- --save_steps="500" \
33
- --save_total_limit="3" \
34
- --text_column_name="sentence" \
35
- --use_auth_token \
36
- --warmup_steps="2000" \
37
- --do_train --do_eval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/run_speech_recognition_ctc-checkpoint.py DELETED
@@ -1,734 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
- # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
-
16
- """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
-
18
- import functools
19
- import json
20
- import logging
21
- import os
22
- import re
23
- import sys
24
- import warnings
25
- from dataclasses import dataclass, field
26
- from typing import Dict, List, Optional, Union
27
-
28
- import datasets
29
- import numpy as np
30
- import torch
31
- from datasets import DatasetDict, load_dataset, load_metric
32
-
33
- import transformers
34
- from transformers import (
35
- AutoConfig,
36
- AutoFeatureExtractor,
37
- AutoModelForCTC,
38
- AutoProcessor,
39
- AutoTokenizer,
40
- HfArgumentParser,
41
- Trainer,
42
- TrainingArguments,
43
- Wav2Vec2Processor,
44
- set_seed,
45
- )
46
- from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
- from transformers.utils import check_min_version
48
- from transformers.utils.versions import require_version
49
-
50
-
51
- # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
- check_min_version("4.16.0.dev0")
53
-
54
- require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
-
56
-
57
- logger = logging.getLogger(__name__)
58
-
59
-
60
- def list_field(default=None, metadata=None):
61
- return field(default_factory=lambda: default, metadata=metadata)
62
-
63
-
64
- @dataclass
65
- class ModelArguments:
66
- """
67
- Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
- """
69
-
70
- model_name_or_path: str = field(
71
- metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
- )
73
- tokenizer_name_or_path: Optional[str] = field(
74
- default=None,
75
- metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
- )
77
- cache_dir: Optional[str] = field(
78
- default=None,
79
- metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
- )
81
- freeze_feature_encoder: bool = field(
82
- default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
- )
84
- attention_dropout: float = field(
85
- default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
- )
87
- activation_dropout: float = field(
88
- default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
- )
90
- feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
- hidden_dropout: float = field(
92
- default=0.0,
93
- metadata={
94
- "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
- },
96
- )
97
- final_dropout: float = field(
98
- default=0.0,
99
- metadata={"help": "The dropout probability for the final projection layer."},
100
- )
101
- mask_time_prob: float = field(
102
- default=0.05,
103
- metadata={
104
- "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
105
- "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
106
- "vectors will be masked along the time axis."
107
- },
108
- )
109
- mask_time_length: int = field(
110
- default=10,
111
- metadata={"help": "Length of vector span to mask along the time axis."},
112
- )
113
- mask_feature_prob: float = field(
114
- default=0.0,
115
- metadata={
116
- "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
117
- "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
118
- },
119
- )
120
- mask_feature_length: int = field(
121
- default=10,
122
- metadata={"help": "Length of vector span to mask along the feature axis."},
123
- )
124
- layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
125
- ctc_loss_reduction: Optional[str] = field(
126
- default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
127
- )
128
-
129
-
130
- @dataclass
131
- class DataTrainingArguments:
132
- """
133
- Arguments pertaining to what data we are going to input our model for training and eval.
134
-
135
- Using `HfArgumentParser` we can turn this class
136
- into argparse arguments to be able to specify them on
137
- the command line.
138
- """
139
-
140
- dataset_name: str = field(
141
- metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
142
- )
143
- dataset_config_name: str = field(
144
- default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
145
- )
146
- train_split_name: str = field(
147
- default="train+validation",
148
- metadata={
149
- "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
150
- },
151
- )
152
- eval_split_name: str = field(
153
- default="test",
154
- metadata={
155
- "help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
156
- },
157
- )
158
- audio_column_name: str = field(
159
- default="audio",
160
- metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
161
- )
162
- text_column_name: str = field(
163
- default="text",
164
- metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
165
- )
166
- overwrite_cache: bool = field(
167
- default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
168
- )
169
- preprocessing_num_workers: Optional[int] = field(
170
- default=None,
171
- metadata={"help": "The number of processes to use for the preprocessing."},
172
- )
173
- max_train_samples: Optional[int] = field(
174
- default=None,
175
- metadata={
176
- "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
177
- "value if set."
178
- },
179
- )
180
- max_eval_samples: Optional[int] = field(
181
- default=None,
182
- metadata={
183
- "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
184
- "value if set."
185
- },
186
- )
187
- chars_to_ignore: Optional[List[str]] = list_field(
188
- default=None,
189
- metadata={"help": "A list of characters to remove from the transcripts."},
190
- )
191
- eval_metrics: List[str] = list_field(
192
- default=["wer"],
193
- metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
194
- )
195
- max_duration_in_seconds: float = field(
196
- default=20.0,
197
- metadata={
198
- "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
199
- },
200
- )
201
- min_duration_in_seconds: float = field(
202
- default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
203
- )
204
- preprocessing_only: bool = field(
205
- default=False,
206
- metadata={
207
- "help": "Whether to only do data preprocessing and skip training. "
208
- "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
209
- "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
210
- "so that the cached datasets can consequently be loaded in distributed training"
211
- },
212
- )
213
- use_auth_token: bool = field(
214
- default=False,
215
- metadata={
216
- "help": "If :obj:`True`, will use the token generated when running"
217
- ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
218
- },
219
- )
220
- unk_token: str = field(
221
- default="[UNK]",
222
- metadata={"help": "The unk token for the tokenizer"},
223
- )
224
- pad_token: str = field(
225
- default="[PAD]",
226
- metadata={"help": "The padding token for the tokenizer"},
227
- )
228
- word_delimiter_token: str = field(
229
- default="|",
230
- metadata={"help": "The word delimiter token for the tokenizer"},
231
- )
232
- phoneme_language: Optional[str] = field(
233
- default=None,
234
- metadata={
235
- "help": "The target language that should be used be"
236
- " passed to the tokenizer for tokenization. Note that"
237
- " this is only relevant if the model classifies the"
238
- " input audio to a sequence of phoneme sequences."
239
- },
240
- )
241
-
242
-
243
- @dataclass
244
- class DataCollatorCTCWithPadding:
245
- """
246
- Data collator that will dynamically pad the inputs received.
247
- Args:
248
- processor (:class:`~transformers.AutoProcessor`)
249
- The processor used for proccessing the data.
250
- padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
251
- Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
252
- among:
253
- * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
254
- sequence if provided).
255
- * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
256
- maximum acceptable input length for the model if that argument is not provided.
257
- * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
258
- different lengths).
259
- max_length (:obj:`int`, `optional`):
260
- Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
261
- max_length_labels (:obj:`int`, `optional`):
262
- Maximum length of the ``labels`` returned list and optionally padding length (see above).
263
- pad_to_multiple_of (:obj:`int`, `optional`):
264
- If set will pad the sequence to a multiple of the provided value.
265
- This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
266
- 7.5 (Volta).
267
- """
268
-
269
- processor: AutoProcessor
270
- padding: Union[bool, str] = "longest"
271
- pad_to_multiple_of: Optional[int] = None
272
- pad_to_multiple_of_labels: Optional[int] = None
273
-
274
- def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
275
- # split inputs and labels since they have to be of different lenghts and need
276
- # different padding methods
277
- input_features = [{"input_values": feature["input_values"]} for feature in features]
278
- label_features = [{"input_ids": feature["labels"]} for feature in features]
279
-
280
- batch = self.processor.pad(
281
- input_features,
282
- padding=self.padding,
283
- pad_to_multiple_of=self.pad_to_multiple_of,
284
- return_tensors="pt",
285
- )
286
-
287
- with self.processor.as_target_processor():
288
- labels_batch = self.processor.pad(
289
- label_features,
290
- padding=self.padding,
291
- pad_to_multiple_of=self.pad_to_multiple_of_labels,
292
- return_tensors="pt",
293
- )
294
-
295
- # replace padding with -100 to ignore loss correctly
296
- labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
297
-
298
- batch["labels"] = labels
299
-
300
- return batch
301
-
302
-
303
- def create_vocabulary_from_data(
304
- datasets: DatasetDict,
305
- word_delimiter_token: Optional[str] = None,
306
- unk_token: Optional[str] = None,
307
- pad_token: Optional[str] = None,
308
- ):
309
- # Given training and test labels create vocabulary
310
- def extract_all_chars(batch):
311
- all_text = " ".join(batch["target_text"])
312
- vocab = list(set(all_text))
313
- return {"vocab": [vocab], "all_text": [all_text]}
314
-
315
- vocabs = datasets.map(
316
- extract_all_chars,
317
- batched=True,
318
- batch_size=-1,
319
- keep_in_memory=True,
320
- remove_columns=datasets["train"].column_names,
321
- )
322
-
323
- # take union of all unique characters in each dataset
324
- vocab_set = functools.reduce(
325
- lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
326
- )
327
-
328
- vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
329
-
330
- # replace white space with delimiter token
331
- if word_delimiter_token is not None:
332
- vocab_dict[word_delimiter_token] = vocab_dict[" "]
333
- del vocab_dict[" "]
334
-
335
- # add unk and pad token
336
- if unk_token is not None:
337
- vocab_dict[unk_token] = len(vocab_dict)
338
-
339
- if pad_token is not None:
340
- vocab_dict[pad_token] = len(vocab_dict)
341
-
342
- return vocab_dict
343
-
344
-
345
- def main():
346
- # See all possible arguments in src/transformers/training_args.py
347
- # or by passing the --help flag to this script.
348
- # We now keep distinct sets of args, for a cleaner separation of concerns.
349
-
350
- parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
351
- if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
352
- # If we pass only one argument to the script and it's the path to a json file,
353
- # let's parse it to get our arguments.
354
- model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
355
- else:
356
- model_args, data_args, training_args = parser.parse_args_into_dataclasses()
357
-
358
- # Detecting last checkpoint.
359
- last_checkpoint = None
360
- if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
361
- last_checkpoint = get_last_checkpoint(training_args.output_dir)
362
- if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
363
- raise ValueError(
364
- f"Output directory ({training_args.output_dir}) already exists and is not empty. "
365
- "Use --overwrite_output_dir to overcome."
366
- )
367
- elif last_checkpoint is not None:
368
- logger.info(
369
- f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
370
- "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
371
- )
372
-
373
- # Setup logging
374
- logging.basicConfig(
375
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
376
- datefmt="%m/%d/%Y %H:%M:%S",
377
- handlers=[logging.StreamHandler(sys.stdout)],
378
- )
379
- logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
380
-
381
- # Log on each process the small summary:
382
- logger.warning(
383
- f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
384
- f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
385
- )
386
- # Set the verbosity to info of the Transformers logger (on main process only):
387
- if is_main_process(training_args.local_rank):
388
- transformers.utils.logging.set_verbosity_info()
389
- logger.info("Training/evaluation parameters %s", training_args)
390
-
391
- # Set seed before initializing model.
392
- set_seed(training_args.seed)
393
-
394
- # 1. First, let's load the dataset
395
- raw_datasets = DatasetDict()
396
-
397
- if training_args.do_train:
398
- raw_datasets["train"] = load_dataset(
399
- data_args.dataset_name,
400
- data_args.dataset_config_name,
401
- split=data_args.train_split_name,
402
- use_auth_token=data_args.use_auth_token,
403
- )
404
-
405
- if data_args.audio_column_name not in raw_datasets["train"].column_names:
406
- raise ValueError(
407
- f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
408
- "Make sure to set `--audio_column_name` to the correct audio column - one of "
409
- f"{', '.join(raw_datasets['train'].column_names)}."
410
- )
411
-
412
- if data_args.text_column_name not in raw_datasets["train"].column_names:
413
- raise ValueError(
414
- f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
415
- "Make sure to set `--text_column_name` to the correct text column - one of "
416
- f"{', '.join(raw_datasets['train'].column_names)}."
417
- )
418
-
419
- if data_args.max_train_samples is not None:
420
- raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
421
-
422
- if training_args.do_eval:
423
- raw_datasets["eval"] = load_dataset(
424
- data_args.dataset_name,
425
- data_args.dataset_config_name,
426
- split=data_args.eval_split_name,
427
- use_auth_token=data_args.use_auth_token,
428
- )
429
-
430
- if data_args.max_eval_samples is not None:
431
- raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
432
-
433
- # 2. We remove some special characters from the datasets
434
- # that make training complicated and do not help in transcribing the speech
435
- # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
436
- # that could be easily picked up by the model
437
- chars_to_ignore_regex = '[^a-zàâäçéèêëîïôöùûüÿ\'’ ]'
438
- text_column_name = data_args.text_column_name
439
-
440
- def remove_and_replace_special_characters(batch):
441
- batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name].lower()).replace('’', "'") + " "
442
- return batch
443
-
444
- with training_args.main_process_first(desc="dataset map special characters removal"):
445
- raw_datasets = raw_datasets.map(
446
- remove_and_replace_special_characters,
447
- remove_columns=[text_column_name],
448
- desc="remove special characters from datasets",
449
- )
450
-
451
- # save special tokens for tokenizer
452
- word_delimiter_token = data_args.word_delimiter_token
453
- unk_token = data_args.unk_token
454
- pad_token = data_args.pad_token
455
-
456
- # 3. Next, let's load the config as we might need it to create
457
- # the tokenizer
458
- # load config
459
- config = AutoConfig.from_pretrained(
460
- model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
461
- )
462
-
463
- # 4. Next, if no tokenizer file is defined,
464
- # we create the vocabulary of the model by extracting all unique characters from
465
- # the training and evaluation datasets
466
- # We need to make sure that only first rank saves vocabulary
467
- # make sure all processes wait until vocab is created
468
- tokenizer_name_or_path = model_args.tokenizer_name_or_path
469
- tokenizer_kwargs = {}
470
- if tokenizer_name_or_path is None:
471
- # save vocab in training output dir
472
- tokenizer_name_or_path = training_args.output_dir
473
-
474
- vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
475
-
476
- with training_args.main_process_first():
477
- if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
478
- os.remove(vocab_file)
479
-
480
- with training_args.main_process_first(desc="dataset map vocabulary creation"):
481
- if not os.path.isfile(vocab_file):
482
- os.makedirs(tokenizer_name_or_path, exist_ok=True)
483
- vocab_dict = create_vocabulary_from_data(
484
- raw_datasets,
485
- word_delimiter_token=word_delimiter_token,
486
- unk_token=unk_token,
487
- pad_token=pad_token,
488
- )
489
-
490
- # save vocab dict to be loaded into tokenizer
491
- with open(vocab_file, "w") as file:
492
- json.dump(vocab_dict, file)
493
-
494
- # if tokenizer has just been created
495
- # it is defined by `tokenizer_class` if present in config else by `model_type`
496
- tokenizer_kwargs = {
497
- "config": config if config.tokenizer_class is not None else None,
498
- "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
499
- "unk_token": unk_token,
500
- "pad_token": pad_token,
501
- "eos_token": None,
502
- "bos_token": None,
503
- "word_delimiter_token": word_delimiter_token,
504
- }
505
-
506
- # 5. Now we can instantiate the feature extractor, tokenizer and model
507
- # Note for distributed training, the .from_pretrained methods guarantee that only
508
- # one local process can concurrently download model & vocab.
509
-
510
- # load feature_extractor and tokenizer
511
- tokenizer = AutoTokenizer.from_pretrained(
512
- tokenizer_name_or_path,
513
- use_auth_token=data_args.use_auth_token,
514
- **tokenizer_kwargs,
515
- )
516
- feature_extractor = AutoFeatureExtractor.from_pretrained(
517
- model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
518
- )
519
-
520
- # adapt config
521
- config.update(
522
- {
523
- "feat_proj_dropout": model_args.feat_proj_dropout,
524
- "attention_dropout": model_args.attention_dropout,
525
- "hidden_dropout": model_args.hidden_dropout,
526
- "final_dropout": model_args.final_dropout,
527
- "mask_time_prob": model_args.mask_time_prob,
528
- "mask_time_length": model_args.mask_time_length,
529
- "mask_feature_prob": model_args.mask_feature_prob,
530
- "mask_feature_length": model_args.mask_feature_length,
531
- "gradient_checkpointing": training_args.gradient_checkpointing,
532
- "layerdrop": model_args.layerdrop,
533
- "ctc_loss_reduction": model_args.ctc_loss_reduction,
534
- "pad_token_id": tokenizer.pad_token_id,
535
- "vocab_size": len(tokenizer),
536
- "activation_dropout": model_args.activation_dropout,
537
- }
538
- )
539
-
540
- # create model
541
- model = AutoModelForCTC.from_pretrained(
542
- model_args.model_name_or_path,
543
- cache_dir=model_args.cache_dir,
544
- config=config,
545
- use_auth_token=data_args.use_auth_token,
546
- )
547
-
548
- # freeze encoder
549
- if model_args.freeze_feature_encoder:
550
- model.freeze_feature_encoder()
551
-
552
- # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
553
- # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
554
- # so that we just need to set the correct target sampling rate and normalize the input
555
- # via the `feature_extractor`
556
-
557
- # make sure that dataset decodes audio with correct sampling rate
558
- dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
559
- if dataset_sampling_rate != feature_extractor.sampling_rate:
560
- raw_datasets = raw_datasets.cast_column(
561
- data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
562
- )
563
-
564
- # derive max & min input length for sample rate & max duration
565
- max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
566
- min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
567
- audio_column_name = data_args.audio_column_name
568
- num_workers = data_args.preprocessing_num_workers
569
-
570
- # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
571
- phoneme_language = data_args.phoneme_language
572
-
573
- # Preprocessing the datasets.
574
- # We need to read the audio files as arrays and tokenize the targets.
575
- def prepare_dataset(batch):
576
- # load audio
577
- sample = batch[audio_column_name]
578
-
579
- inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
580
- batch["input_values"] = inputs.input_values[0]
581
- batch["input_length"] = len(batch["input_values"])
582
-
583
- # encode targets
584
- additional_kwargs = {}
585
- if phoneme_language is not None:
586
- additional_kwargs["phonemizer_lang"] = phoneme_language
587
-
588
- batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
589
- return batch
590
-
591
- with training_args.main_process_first(desc="dataset map preprocessing"):
592
- vectorized_datasets = raw_datasets.map(
593
- prepare_dataset,
594
- remove_columns=next(iter(raw_datasets.values())).column_names,
595
- num_proc=num_workers,
596
- desc="preprocess datasets",
597
- )
598
-
599
- def is_audio_in_length_range(length):
600
- return length > min_input_length and length < max_input_length
601
-
602
- # filter data that is shorter than min_input_length
603
- vectorized_datasets = vectorized_datasets.filter(
604
- is_audio_in_length_range,
605
- num_proc=num_workers,
606
- input_columns=["input_length"],
607
- )
608
-
609
- # 7. Next, we can prepare the training.
610
- # Let's use word error rate (WER) as our evaluation metric,
611
- # instantiate a data collator and the trainer
612
-
613
- # Define evaluation metrics during training, *i.e.* word error rate, character error rate
614
- eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
615
-
616
- # for large datasets it is advised to run the preprocessing on a
617
- # single machine first with ``args.preprocessing_only`` since there will mostly likely
618
- # be a timeout when running the script in distributed mode.
619
- # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
620
- # cached dataset
621
- if data_args.preprocessing_only:
622
- logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
623
- return
624
-
625
- def compute_metrics(pred):
626
- pred_logits = pred.predictions
627
- pred_ids = np.argmax(pred_logits, axis=-1)
628
-
629
- pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
630
-
631
- pred_str = tokenizer.batch_decode(pred_ids)
632
- # we do not want to group tokens when computing the metrics
633
- label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
634
-
635
- metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
636
-
637
- return metrics
638
-
639
- # Now save everything to be able to create a single processor later
640
- if is_main_process(training_args.local_rank):
641
- # save feature extractor, tokenizer and config
642
- feature_extractor.save_pretrained(training_args.output_dir)
643
- tokenizer.save_pretrained(training_args.output_dir)
644
- config.save_pretrained(training_args.output_dir)
645
-
646
- try:
647
- processor = AutoProcessor.from_pretrained(training_args.output_dir)
648
- except (OSError, KeyError):
649
- warnings.warn(
650
- "Loading a processor from a feature extractor config that does not"
651
- " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
652
- " attribute to your `preprocessor_config.json` file to suppress this warning: "
653
- " `'processor_class': 'Wav2Vec2Processor'`",
654
- FutureWarning,
655
- )
656
- processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
657
-
658
- # Instantiate custom data collator
659
- data_collator = DataCollatorCTCWithPadding(processor=processor)
660
-
661
- # Initialize Trainer
662
- trainer = Trainer(
663
- model=model,
664
- data_collator=data_collator,
665
- args=training_args,
666
- compute_metrics=compute_metrics,
667
- train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
668
- eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
669
- tokenizer=feature_extractor,
670
- )
671
-
672
- # 8. Finally, we can start training
673
-
674
- # Training
675
- if training_args.do_train:
676
-
677
- # use last checkpoint if exist
678
- if last_checkpoint is not None:
679
- checkpoint = last_checkpoint
680
- elif os.path.isdir(model_args.model_name_or_path):
681
- checkpoint = model_args.model_name_or_path
682
- else:
683
- checkpoint = None
684
-
685
- train_result = trainer.train(resume_from_checkpoint=checkpoint)
686
- trainer.save_model()
687
-
688
- metrics = train_result.metrics
689
- max_train_samples = (
690
- data_args.max_train_samples
691
- if data_args.max_train_samples is not None
692
- else len(vectorized_datasets["train"])
693
- )
694
- metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
695
-
696
- trainer.log_metrics("train", metrics)
697
- trainer.save_metrics("train", metrics)
698
- trainer.save_state()
699
-
700
- # Evaluation
701
- results = {}
702
- if training_args.do_eval:
703
- logger.info("*** Evaluate ***")
704
- metrics = trainer.evaluate()
705
- max_eval_samples = (
706
- data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
707
- )
708
- metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
709
-
710
- trainer.log_metrics("eval", metrics)
711
- trainer.save_metrics("eval", metrics)
712
-
713
- # Write model card and (optionally) push to hub
714
- config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
715
- kwargs = {
716
- "finetuned_from": model_args.model_name_or_path,
717
- "tasks": "speech-recognition",
718
- "tags": ["automatic-speech-recognition", data_args.dataset_name],
719
- "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
720
- "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
721
- }
722
- if "common_voice" in data_args.dataset_name:
723
- kwargs["language"] = config_name
724
-
725
- if training_args.push_to_hub:
726
- trainer.push_to_hub(**kwargs)
727
- else:
728
- trainer.create_model_card(**kwargs)
729
-
730
- return results
731
-
732
-
733
- if __name__ == "__main__":
734
- main()