Created inference file, moved torch no grad to model.py, removed timm user warning and used a different photo from the demo for default inference image.
2ca249a
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from einops import rearrange | |
from PIL import Image, ImageFilter, ImageOps | |
from timm.layers import DropPath, to_2tuple, trunc_normal_ | |
from torchvision import transforms | |
class Mlp(nn.Module): | |
""" Multilayer perceptron.""" | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*B, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows | |
def window_reverse(windows, window_size, H, W): | |
""" | |
Args: | |
windows: (num_windows*B, window_size, window_size, C) | |
window_size (int): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class WindowAttention(nn.Module): | |
""" Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wh, Ww | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
trunc_normal_(self.relative_position_bias_table, std=.02) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, mask=None): | |
""" Forward function. | |
Args: | |
x: input features with shape of (num_windows*B, N, C) | |
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
""" | |
B_, N, C = x.shape | |
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if mask is not None: | |
nW = mask.shape[0] | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class SwinTransformerBlock(nn.Module): | |
""" Swin Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, dim, num_heads, window_size=7, shift_size=0, | |
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention( | |
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.H = None | |
self.W = None | |
def forward(self, x, mask_matrix): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, H*W, C). | |
H, W: Spatial resolution of the input feature. | |
mask_matrix: Attention mask for cyclic shift. | |
""" | |
B, L, C = x.shape | |
H, W = self.H, self.W | |
assert L == H * W, "input feature has wrong size" | |
shortcut = x | |
x = self.norm1(x) | |
x = x.view(B, H, W, C) | |
# pad feature maps to multiples of window size | |
pad_l = pad_t = 0 | |
pad_r = (self.window_size - W % self.window_size) % self.window_size | |
pad_b = (self.window_size - H % self.window_size) % self.window_size | |
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
_, Hp, Wp, _ = x.shape | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
attn_mask = mask_matrix | |
else: | |
shifted_x = x | |
attn_mask = None | |
# partition windows | |
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C | |
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C | |
# W-MSA/SW-MSA | |
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | |
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
x = shifted_x | |
if pad_r > 0 or pad_b > 0: | |
x = x[:, :H, :W, :].contiguous() | |
x = x.view(B, H * W, C) | |
# FFN | |
x = shortcut + self.drop_path(x) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchMerging(nn.Module): | |
""" Patch Merging Layer | |
Args: | |
dim (int): Number of input channels. | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, dim, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def forward(self, x, H, W): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, H*W, C). | |
H, W: Spatial resolution of the input feature. | |
""" | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
x = x.view(B, H, W, C) | |
# padding | |
pad_input = (H % 2 == 1) or (W % 2 == 1) | |
if pad_input: | |
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) | |
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C | |
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C | |
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C | |
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C | |
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C | |
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C | |
x = self.norm(x) | |
x = self.reduction(x) | |
return x | |
class BasicLayer(nn.Module): | |
""" A basic Swin Transformer layer for one stage. | |
Args: | |
dim (int): Number of feature channels | |
depth (int): Depths of this stage. | |
num_heads (int): Number of attention head. | |
window_size (int): Local window size. Default: 7. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
""" | |
def __init__(self, | |
dim, | |
depth, | |
num_heads, | |
window_size=7, | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
use_checkpoint=False): | |
super().__init__() | |
self.window_size = window_size | |
self.shift_size = window_size // 2 | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
SwinTransformerBlock( | |
dim=dim, | |
num_heads=num_heads, | |
window_size=window_size, | |
shift_size=0 if (i % 2 == 0) else window_size // 2, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
norm_layer=norm_layer) | |
for i in range(depth)]) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample(dim=dim, norm_layer=norm_layer) | |
else: | |
self.downsample = None | |
def forward(self, x, H, W): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, H*W, C). | |
H, W: Spatial resolution of the input feature. | |
""" | |
# calculate attention mask for SW-MSA | |
Hp = int(np.ceil(H / self.window_size)) * self.window_size | |
Wp = int(np.ceil(W / self.window_size)) * self.window_size | |
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 | |
h_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
w_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
for blk in self.blocks: | |
blk.H, blk.W = H, W | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x, attn_mask) | |
else: | |
x = blk(x, attn_mask) | |
if self.downsample is not None: | |
x_down = self.downsample(x, H, W) | |
Wh, Ww = (H + 1) // 2, (W + 1) // 2 | |
return x, H, W, x_down, Wh, Ww | |
else: | |
return x, H, W, x, H, W | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
Args: | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): | |
super().__init__() | |
patch_size = to_2tuple(patch_size) | |
self.patch_size = patch_size | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
"""Forward function.""" | |
# padding | |
_, _, H, W = x.size() | |
if W % self.patch_size[1] != 0: | |
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) | |
if H % self.patch_size[0] != 0: | |
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) | |
x = self.proj(x) # B C Wh Ww | |
if self.norm is not None: | |
Wh, Ww = x.size(2), x.size(3) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) | |
return x | |
class SwinTransformer(nn.Module): | |
""" Swin Transformer backbone. | |
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - | |
https://arxiv.org/pdf/2103.14030 | |
Args: | |
pretrain_img_size (int): Input image size for training the pretrained model, | |
used in absolute postion embedding. Default 224. | |
patch_size (int | tuple(int)): Patch size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
depths (tuple[int]): Depths of each Swin Transformer stage. | |
num_heads (tuple[int]): Number of attention head of each stage. | |
window_size (int): Window size. Default: 7. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. | |
drop_rate (float): Dropout rate. | |
attn_drop_rate (float): Attention dropout rate. Default: 0. | |
drop_path_rate (float): Stochastic depth rate. Default: 0.2. | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True. | |
out_indices (Sequence[int]): Output from which stages. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
""" | |
def __init__(self, | |
pretrain_img_size=224, | |
patch_size=4, | |
in_chans=3, | |
embed_dim=96, | |
depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 24], | |
window_size=7, | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0.2, | |
norm_layer=nn.LayerNorm, | |
ape=False, | |
patch_norm=True, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=-1, | |
use_checkpoint=False): | |
super().__init__() | |
self.pretrain_img_size = pretrain_img_size | |
self.num_layers = len(depths) | |
self.embed_dim = embed_dim | |
self.ape = ape | |
self.patch_norm = patch_norm | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None) | |
# absolute position embedding | |
if self.ape: | |
pretrain_img_size = to_2tuple(pretrain_img_size) | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]] | |
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])) | |
trunc_normal_(self.absolute_pos_embed, std=.02) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = BasicLayer( | |
dim=int(embed_dim * 2 ** i_layer), | |
depth=depths[i_layer], | |
num_heads=num_heads[i_layer], | |
window_size=window_size, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
norm_layer=norm_layer, | |
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, | |
use_checkpoint=use_checkpoint) | |
self.layers.append(layer) | |
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] | |
self.num_features = num_features | |
# add a norm layer for each output | |
for i_layer in out_indices: | |
layer = norm_layer(num_features[i_layer]) | |
layer_name = f'norm{i_layer}' | |
self.add_module(layer_name, layer) | |
self._freeze_stages() | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
if self.frozen_stages >= 1 and self.ape: | |
self.absolute_pos_embed.requires_grad = False | |
if self.frozen_stages >= 2: | |
self.pos_drop.eval() | |
for i in range(0, self.frozen_stages - 1): | |
m = self.layers[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def forward(self, x): | |
x = self.patch_embed(x) | |
Wh, Ww = x.size(2), x.size(3) | |
if self.ape: | |
# interpolate the position embedding to the corresponding size | |
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic') | |
x = (x + absolute_pos_embed) # B Wh*Ww C | |
outs = [x.contiguous()] | |
x = x.flatten(2).transpose(1, 2) | |
x = self.pos_drop(x) | |
for i in range(self.num_layers): | |
layer = self.layers[i] | |
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) | |
if i in self.out_indices: | |
norm_layer = getattr(self, f'norm{i}') | |
x_out = norm_layer(x_out) | |
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() | |
outs.append(out) | |
return tuple(outs) | |
def get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "gelu": | |
return F.gelu | |
raise RuntimeError(F"activation should be gelu, not {activation}.") | |
def make_cbr(in_dim, out_dim): | |
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU()) | |
def make_cbg(in_dim, out_dim): | |
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU()) | |
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'): | |
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation) | |
def resize_as(x, y, interpolation='bilinear'): | |
return F.interpolate(x, size=y.shape[-2:], mode=interpolation) | |
def image2patches(x): | |
"""b c (hg h) (wg w) -> (hg wg b) c h w""" | |
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2) | |
return x | |
def patches2image(x): | |
"""(hg wg b) c h w -> b c (hg h) (wg w)""" | |
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2) | |
return x | |
class PositionEmbeddingSine: | |
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): | |
super().__init__() | |
self.num_pos_feats = num_pos_feats | |
self.temperature = temperature | |
self.normalize = normalize | |
if scale is not None and normalize is False: | |
raise ValueError("normalize should be True if scale is passed") | |
if scale is None: | |
scale = 2 * math.pi | |
self.scale = scale | |
self.dim_t = torch.arange(0, self.num_pos_feats, dtype=torch.float32) | |
def __call__(self, b, h, w): | |
device = self.dim_t.device | |
mask = torch.zeros([b, h, w], dtype=torch.bool, device=device) | |
assert mask is not None | |
not_mask = ~mask | |
y_embed = not_mask.cumsum(dim=1, dtype=torch.float32) | |
x_embed = not_mask.cumsum(dim=2, dtype=torch.float32) | |
if self.normalize: | |
eps = 1e-6 | |
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale | |
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale | |
dim_t = self.temperature ** (2 * (self.dim_t.to(device) // 2) / self.num_pos_feats) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) | |
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) | |
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
class MCLM(nn.Module): | |
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]): | |
super(MCLM, self).__init__() | |
self.attention = nn.ModuleList([ | |
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), | |
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), | |
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), | |
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), | |
nn.MultiheadAttention(d_model, num_heads, dropout=0.1) | |
]) | |
self.linear1 = nn.Linear(d_model, d_model * 2) | |
self.linear2 = nn.Linear(d_model * 2, d_model) | |
self.linear3 = nn.Linear(d_model, d_model * 2) | |
self.linear4 = nn.Linear(d_model * 2, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout = nn.Dropout(0.1) | |
self.dropout1 = nn.Dropout(0.1) | |
self.dropout2 = nn.Dropout(0.1) | |
self.activation = get_activation_fn('gelu') | |
self.pool_ratios = pool_ratios | |
self.p_poses = [] | |
self.g_pos = None | |
self.positional_encoding = PositionEmbeddingSine(num_pos_feats=d_model // 2, normalize=True) | |
def forward(self, l, g): | |
""" | |
l: 4,c,h,w | |
g: 1,c,h,w | |
""" | |
b, c, h, w = l.size() | |
# 4,c,h,w -> 1,c,2h,2w | |
concated_locs = rearrange(l, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2) | |
pools = [] | |
for pool_ratio in self.pool_ratios: | |
# b,c,h,w | |
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio)) | |
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw) | |
pools.append(rearrange(pool, 'b c h w -> (h w) b c')) | |
if self.g_pos is None: | |
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2], pool.shape[3]) | |
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c') | |
self.p_poses.append(pos_emb) | |
pools = torch.cat(pools, 0) | |
if self.g_pos is None: | |
self.p_poses = torch.cat(self.p_poses, dim=0) | |
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3]) | |
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c') | |
device = pools.device | |
self.p_poses = self.p_poses.to(device) | |
self.g_pos = self.g_pos.to(device) | |
# attention between glb (q) & multisensory concated-locs (k,v) | |
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c') | |
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0]) | |
g_hw_b_c = self.norm1(g_hw_b_c) | |
g_hw_b_c = g_hw_b_c + self.dropout2(self.linear2(self.dropout(self.activation(self.linear1(g_hw_b_c)).clone()))) | |
g_hw_b_c = self.norm2(g_hw_b_c) | |
# attention between origin locs (q) & freashed glb (k,v) | |
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c") | |
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w) | |
_g_hw_b_c = rearrange(_g_hw_b_c, "(ng h) (nw w) b c -> (h w) (ng nw b) c", ng=2, nw=2) | |
outputs_re = [] | |
for i, (_l, _g) in enumerate(zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))): | |
outputs_re.append(self.attention[i + 1](_l, _g, _g)[0]) # (h w) 1 c | |
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c | |
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re) | |
l_hw_b_c = self.norm1(l_hw_b_c) | |
l_hw_b_c = l_hw_b_c + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(l_hw_b_c)).clone()))) | |
l_hw_b_c = self.norm2(l_hw_b_c) | |
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c | |
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w) | |
class MCRM(nn.Module): | |
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None): | |
super(MCRM, self).__init__() | |
self.attention = nn.ModuleList([ | |
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), | |
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), | |
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), | |
nn.MultiheadAttention(d_model, num_heads, dropout=0.1) | |
]) | |
self.linear3 = nn.Linear(d_model, d_model * 2) | |
self.linear4 = nn.Linear(d_model * 2, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout = nn.Dropout(0.1) | |
self.dropout1 = nn.Dropout(0.1) | |
self.dropout2 = nn.Dropout(0.1) | |
self.sigmoid = nn.Sigmoid() | |
self.activation = get_activation_fn('gelu') | |
self.sal_conv = nn.Conv2d(d_model, 1, 1) | |
self.pool_ratios = pool_ratios | |
def forward(self, x): | |
device = x.device | |
b, c, h, w = x.size() | |
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w | |
patched_glb = rearrange(glb, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2) | |
token_attention_map = self.sigmoid(self.sal_conv(glb)) | |
token_attention_map = F.interpolate(token_attention_map, size=patches2image(loc).shape[-2:], mode='nearest') | |
loc = loc * rearrange(token_attention_map, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2) | |
pools = [] | |
for pool_ratio in self.pool_ratios: | |
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio)) | |
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw) | |
pools.append(rearrange(pool, 'nl c h w -> nl c (h w)')) # nl(4),c,hw | |
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c") | |
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c') | |
outputs = [] | |
for i, q in enumerate(loc_.unbind(dim=0)): # traverse all local patches | |
v = pools[i] | |
k = v | |
outputs.append(self.attention[i](q, k, v)[0]) | |
outputs = torch.cat(outputs, 1) | |
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs) | |
src = self.norm1(src) | |
src = src + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(src)).clone()))) | |
src = self.norm2(src) | |
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc | |
glb = glb + F.interpolate(patches2image(src), size=glb.shape[-2:], mode='nearest') # freshed glb | |
return torch.cat((src, glb), 0), token_attention_map | |
class BEN_Base(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.backbone = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12) | |
emb_dim = 128 | |
self.sideout5 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) | |
self.sideout4 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) | |
self.sideout3 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) | |
self.sideout2 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) | |
self.sideout1 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) | |
self.output5 = make_cbr(1024, emb_dim) | |
self.output4 = make_cbr(512, emb_dim) | |
self.output3 = make_cbr(256, emb_dim) | |
self.output2 = make_cbr(128, emb_dim) | |
self.output1 = make_cbr(128, emb_dim) | |
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8]) | |
self.conv1 = make_cbr(emb_dim, emb_dim) | |
self.conv2 = make_cbr(emb_dim, emb_dim) | |
self.conv3 = make_cbr(emb_dim, emb_dim) | |
self.conv4 = make_cbr(emb_dim, emb_dim) | |
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8]) | |
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8]) | |
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8]) | |
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8]) | |
self.insmask_head = nn.Sequential( | |
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1), | |
nn.InstanceNorm2d(384), | |
nn.GELU(), | |
nn.Conv2d(384, 384, kernel_size=3, padding=1), | |
nn.InstanceNorm2d(384), | |
nn.GELU(), | |
nn.Conv2d(384, emb_dim, kernel_size=3, padding=1) | |
) | |
self.shallow = nn.Sequential(nn.Conv2d(3, emb_dim, kernel_size=3, padding=1)) | |
self.upsample1 = make_cbg(emb_dim, emb_dim) | |
self.upsample2 = make_cbg(emb_dim, emb_dim) | |
self.output = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) | |
for m in self.modules(): | |
if isinstance(m, nn.GELU) or isinstance(m, nn.Dropout): | |
m.inplace = True | |
def forward(self, x): | |
device = x.device | |
shallow = self.shallow(x) | |
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear') | |
loc = image2patches(x) | |
input = torch.cat((loc, glb), dim=0) | |
feature = self.backbone(input) | |
e5 = self.output5(feature[4]) # (5,128,16,16) | |
e4 = self.output4(feature[3]) # (5,128,32,32) | |
e3 = self.output3(feature[2]) # (5,128,64,64) | |
e2 = self.output2(feature[1]) # (5,128,128,128) | |
e1 = self.output1(feature[0]) # (5,128,128,128) | |
loc_e5, glb_e5 = e5.split([4, 1], dim=0) | |
e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16) | |
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4)) | |
e4 = self.conv4(e4) | |
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3)) | |
e3 = self.conv3(e3) | |
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2)) | |
e2 = self.conv2(e2) | |
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1)) | |
e1 = self.conv1(e1) | |
loc_e1, glb_e1 = e1.split([4, 1], dim=0) | |
output1_cat = patches2image(loc_e1) # (1,128,256,256) | |
output1_cat = output1_cat + resize_as(glb_e1, output1_cat) | |
final_output = self.insmask_head(output1_cat) # (1,128,256,256) | |
final_output = final_output + resize_as(shallow, final_output) | |
final_output = self.upsample1(rescale_to(final_output)) | |
final_output = rescale_to(final_output + resize_as(shallow, final_output)) | |
final_output = self.upsample2(final_output) | |
final_output = self.output(final_output) | |
return final_output.sigmoid() | |
def inference(self,image): | |
image, h, w,original_image = rgb_loader_refiner(image) | |
img_tensor = img_transform(image).unsqueeze(0).to(next(self.parameters()).device) | |
res = self.forward(img_tensor) | |
pred_array = postprocess_image(res, im_size=[w, h]) | |
mask_image = Image.fromarray(pred_array, mode='L') | |
blurred_mask = mask_image.filter(ImageFilter.GaussianBlur(radius=1)) | |
original_image_rgba = original_image.convert("RGBA") | |
foreground = original_image_rgba.copy() | |
foreground.putalpha(blurred_mask) | |
return blurred_mask, foreground | |
def loadcheckpoints(self,model_path): | |
model_dict = torch.load(model_path, map_location="cpu", weights_only=True) | |
self.load_state_dict(model_dict['model_state_dict'], strict=True) | |
del model_path | |
def rgb_loader_refiner( original_image): | |
h, w = original_image.size | |
# # Apply EXIF orientation | |
image = ImageOps.exif_transpose(original_image) | |
# Convert to RGB if necessary | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
# Resize the image | |
image = image.resize((1024, 1024), resample=Image.LANCZOS) | |
return image.convert('RGB'), h, w,original_image | |
# Define the image transformation | |
img_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.ConvertImageDtype(torch.float32), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray: | |
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear'), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8) | |
im_array = np.squeeze(im_array) | |
return im_array | |