Max Meyer commited on
Commit
6b1c941
·
verified ·
1 Parent(s): 906d524

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -35
README.md CHANGED
@@ -2,65 +2,54 @@
2
  license: apache-2.0
3
  ---
4
 
5
-
6
  # BEN - Background Erase Network
7
 
8
  BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.
9
 
10
-
11
  # BEN SOA Benchmarks on Disk 5k Eval
12
 
13
- BEN_Base + BEN_Refiner (commerical model please contanct us for more information): \n
14
- MAE-0.0283 \n
15
- DICE-0.8976 \n
16
- IOU-0.8430 \n
17
- BER-0.0542 \n
18
- ACC-0.9725 \n
19
-
20
-
21
- BEN_Base: \n
22
- MAE-0.0331 \n
23
- DICE-0.8743 \n
24
- IOU-0.8301 \n
25
- BER-0.0560 \n
26
- ACC-0.9700 \n
27
-
28
- MVANet (old SOA): \n
29
- MAE-0.0353 \n
30
- DICE-0.8676 \n
31
- IOU-0.8104 \n
32
- BER-0.0639 \n
33
- ACC-0.9660 \n
34
-
35
-
36
-
37
-
38
 
39
  ## Features
40
-
41
  - Background removal from images
42
  - Generates both binary mask and foreground image
43
  - CUDA support for GPU acceleration
44
  - Simple API for easy integration
45
 
46
  ## Installation
47
- - Clone Repo
48
- - Install requirements.txt
49
 
50
  ## Quick Start Code
 
51
  from BEN import BEN_Base
52
  from PIL import Image
53
  import torch
54
 
55
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
56
-
57
-
58
  model = BEN_Base().to(device).eval()
59
  model.loadcheckpoints("./BEN/BEN_Base.pth")
60
 
61
  image = Image.open("./image2.jpg")
62
  mask, foreground = model.inference(image)
63
-
64
  mask.save("./mask.png")
65
- foreground.save("./foreground.png")
66
-
 
2
  license: apache-2.0
3
  ---
4
 
 
5
  # BEN - Background Erase Network
6
 
7
  BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.
8
 
 
9
  # BEN SOA Benchmarks on Disk 5k Eval
10
 
11
+ ### BEN_Base + BEN_Refiner (commercial model please contact us for more information):
12
+ - MAE: 0.0283
13
+ - DICE: 0.8976
14
+ - IOU: 0.8430
15
+ - BER: 0.0542
16
+ - ACC: 0.9725
17
+
18
+ ### BEN_Base:
19
+ - MAE: 0.0331
20
+ - DICE: 0.8743
21
+ - IOU: 0.8301
22
+ - BER: 0.0560
23
+ - ACC: 0.9700
24
+
25
+ ### MVANet (old SOA):
26
+ - MAE: 0.0353
27
+ - DICE: 0.8676
28
+ - IOU: 0.8104
29
+ - BER: 0.0639
30
+ - ACC: 0.9660
 
 
 
 
 
31
 
32
  ## Features
 
33
  - Background removal from images
34
  - Generates both binary mask and foreground image
35
  - CUDA support for GPU acceleration
36
  - Simple API for easy integration
37
 
38
  ## Installation
39
+ 1. Clone Repo
40
+ 2. Install requirements.txt
41
 
42
  ## Quick Start Code
43
+ ```python
44
  from BEN import BEN_Base
45
  from PIL import Image
46
  import torch
47
 
48
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
 
49
  model = BEN_Base().to(device).eval()
50
  model.loadcheckpoints("./BEN/BEN_Base.pth")
51
 
52
  image = Image.open("./image2.jpg")
53
  mask, foreground = model.inference(image)
 
54
  mask.save("./mask.png")
55
+ foreground.save("./foreground.png")