Pravincoder commited on
Commit
59a0c5e
·
verified ·
1 Parent(s): 8c40131

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -1
README.md CHANGED
@@ -2,8 +2,84 @@
2
  tags:
3
  - autotrain
4
  - text-generation
 
 
5
  widget:
6
- - text: "I love AutoTrain because "
 
 
 
 
7
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  # Model Trained Using AutoTrain
 
2
  tags:
3
  - autotrain
4
  - text-generation
5
+ - health
6
+ - medical
7
  widget:
8
+ - text: 'I love AutoTrain because '
9
+ license: mit
10
+ language:
11
+ - en
12
+ library_name: peft
13
  ---
14
+ ---
15
+
16
+
17
+ ### Base Model Description
18
+
19
+ The Pythia 70M model is a transformer-based language model developed by EleutherAI.
20
+ It is part of the Pythia series, known for its high performance in natural language understanding and generation tasks.
21
+ With 70 million parameters, it is designed to handle a wide range of NLP applications, offering a balance between computational efficiency and model capability.
22
+
23
+
24
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
25
+
26
+ - **Developed by:** Pravin Maurya
27
+ - **Model type:** LoRa fine-tuned transformer model
28
+ - **Language(s) (NLP):** English
29
+ - **License:** MIT
30
+ - **Finetuned from model:** EleutherAI/pythia-70m
31
+
32
+ ### Model Sources [optional]
33
+
34
+ <!-- Provide the basic links for the model. -->
35
+
36
+ - **Colab Link:** [Click me🔗](https://colab.research.google.com/drive/1tyogv7jtc8a4h23pEIlJW2vBgWTTzy3e#scrollTo=b6fQzRl2faSn)
37
+
38
+ ## Uses
39
+
40
+ Downstream uses are model can be fine-tuned further for specific applications like medical AI assistants, legal document generation, and other domain-specific NLP tasks.
41
+
42
+ ## How to Get Started with the Model
43
+
44
+ Use the code below to get started with the model.
45
+
46
+ ```python
47
+ import torch
48
+ from transformers import AutoTokenizer, AutoModelForCausalLM
49
+
50
+ model = AutoModelForCausalLM.from_pretrained("Pravincoder/pythia-legal-llm-v4 ")
51
+ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-70m")
52
+
53
+ def inference(text, model, tokenizer, max_input_tokens=1000, max_output_tokens=200):
54
+ input_ids = tokenizer.encode(text, return_tensors="pt", truncation=True, max_length=max_input_tokens)
55
+ device = model.device
56
+ generated_tokens_with_prompt = model.generate(input_ids=input_ids.to(device), max_length=max_output_tokens)
57
+ generated_text_with_prompt = tokenizer.batch_decode(generated_tokens_with_prompt, skip_special_tokens=True)
58
+ generated_text_answer = generated_text_with_prompt[0][len(text):]
59
+ return generated_text_answer
60
+
61
+ system_message = "Welcome to the medical AI assistant."
62
+ user_message = "What are the symptoms of influenza?"
63
+ generated_response = inference(system_message, user_message, model, tokenizer)
64
+ print("Generated Response:", generated_response)
65
+ ```
66
+
67
+ ## Training Data
68
+ The model was fine-tuned using data relevant to the medical Chat data. for more info [click me🔗](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset)
69
+
70
+
71
+ ### Training Procedure
72
+
73
+ Data preprocessing involved tokenization and formatting suitable for the transformer model.
74
+
75
+ #### Training Hyperparameters
76
+ -Training regime: Mixed precision (fp16)
77
+
78
+ ## Hardware
79
+ - **Hardware Type:** T4 Google Colab GPU
80
+ - **Hours used:** 1.30-2 hr
81
+
82
+ ## Model Card Contact
83
+ Email :- [email protected]
84
 
85
  # Model Trained Using AutoTrain