Upload folder using huggingface_hub (#1)
Browse files- 58141ac9d879c55a6b1d152801e1443516236f833de1b6cb6306fecc22fac4ef (d080d8c093653f23816136dc39c97a6d74dca993)
- 914bff5af503bdda7a82dffd3fa8251caa61a82ab6994bffa5be0e325e08986d (a78c0d71cae3cebf1bb1222807f6903a8d4ab29c)
- c5a135d78eed281e4d654d8e308ad70cacbd134834411f1d565c41c53e68fc68 (b991d127ce27220ed99ade67bc622e61d23e8a68)
- README.md +85 -0
- config.json +54 -0
- configuration_falcon.py +152 -0
- generation_config.json +7 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +458 -0
- smash_config.json +35 -0
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
+
base_model: aman-augurs/duble-merge
|
4 |
+
metrics:
|
5 |
+
- memory_disk
|
6 |
+
- memory_inference
|
7 |
+
- inference_latency
|
8 |
+
- inference_throughput
|
9 |
+
- inference_CO2_emissions
|
10 |
+
- inference_energy_consumption
|
11 |
+
tags:
|
12 |
+
- pruna-ai
|
13 |
+
---
|
14 |
+
<!-- header start -->
|
15 |
+
<!-- 200823 -->
|
16 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
17 |
+
<a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer">
|
18 |
+
<img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
19 |
+
</a>
|
20 |
+
</div>
|
21 |
+
<!-- header end -->
|
22 |
+
|
23 |
+
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
|
24 |
+
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
|
25 |
+
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
26 |
+
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
|
27 |
+
|
28 |
+
# Simply make AI models cheaper, smaller, faster, and greener!
|
29 |
+
|
30 |
+
- Give a thumbs up if you like this model!
|
31 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
32 |
+
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
33 |
+
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
34 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
35 |
+
|
36 |
+
## Results
|
37 |
+
|
38 |
+
![image info](./plots.png)
|
39 |
+
|
40 |
+
**Frequently Asked Questions**
|
41 |
+
- ***How does the compression work?*** The model is compressed with llm-int8.
|
42 |
+
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
43 |
+
- ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
44 |
+
- ***What is the model format?*** We use safetensors.
|
45 |
+
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
46 |
+
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
47 |
+
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
48 |
+
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
|
49 |
+
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
|
50 |
+
|
51 |
+
## Setup
|
52 |
+
|
53 |
+
You can run the smashed model with these steps:
|
54 |
+
|
55 |
+
0. Check requirements from the original repo aman-augurs/duble-merge installed. In particular, check python, cuda, and transformers versions.
|
56 |
+
1. Make sure that you have installed quantization related packages.
|
57 |
+
```bash
|
58 |
+
pip install transformers accelerate bitsandbytes>0.37.0
|
59 |
+
```
|
60 |
+
2. Load & run the model.
|
61 |
+
```python
|
62 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
+
|
64 |
+
|
65 |
+
model = AutoModelForCausalLM.from_pretrained("PrunaAI/aman-augurs-duble-merge-bnb-8bit-smashed", trust_remote_code=True, device_map='auto')
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("aman-augurs/duble-merge")
|
67 |
+
|
68 |
+
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
69 |
+
|
70 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
71 |
+
tokenizer.decode(outputs[0])
|
72 |
+
```
|
73 |
+
|
74 |
+
## Configurations
|
75 |
+
|
76 |
+
The configuration info are in `smash_config.json`.
|
77 |
+
|
78 |
+
## Credits & License
|
79 |
+
|
80 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model aman-augurs/duble-merge before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
81 |
+
|
82 |
+
## Want to compress other models?
|
83 |
+
|
84 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
85 |
+
- Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
|
config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/covalent/.cache/models/tmp3kfv_gz97cby61cu",
|
3 |
+
"alibi": false,
|
4 |
+
"apply_residual_connection_post_layernorm": false,
|
5 |
+
"architectures": [
|
6 |
+
"FalconForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_falcon.FalconConfig",
|
11 |
+
"AutoModel": "tiiuae/falcon-7b--modeling_falcon.FalconModel",
|
12 |
+
"AutoModelForCausalLM": "tiiuae/falcon-7b--modeling_falcon.FalconForCausalLM",
|
13 |
+
"AutoModelForQuestionAnswering": "tiiuae/falcon-7b--modeling_falcon.FalconForQuestionAnswering",
|
14 |
+
"AutoModelForSequenceClassification": "tiiuae/falcon-7b--modeling_falcon.FalconForSequenceClassification",
|
15 |
+
"AutoModelForTokenClassification": "tiiuae/falcon-7b--modeling_falcon.FalconForTokenClassification"
|
16 |
+
},
|
17 |
+
"bias": false,
|
18 |
+
"bos_token_id": 65024,
|
19 |
+
"eos_token_id": 65025,
|
20 |
+
"hidden_dropout": 0.0,
|
21 |
+
"hidden_size": 4544,
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"layer_norm_epsilon": 1e-05,
|
24 |
+
"model_type": "falcon",
|
25 |
+
"multi_query": true,
|
26 |
+
"new_decoder_architecture": false,
|
27 |
+
"num_attention_heads": 71,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_kv_heads": 71,
|
30 |
+
"pad_token_id": 65025,
|
31 |
+
"parallel_attn": true,
|
32 |
+
"quantization_config": {
|
33 |
+
"_load_in_4bit": false,
|
34 |
+
"_load_in_8bit": true,
|
35 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
36 |
+
"bnb_4bit_quant_storage": "uint8",
|
37 |
+
"bnb_4bit_quant_type": "fp4",
|
38 |
+
"bnb_4bit_use_double_quant": false,
|
39 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
40 |
+
"llm_int8_has_fp16_weight": false,
|
41 |
+
"llm_int8_skip_modules": [
|
42 |
+
"lm_head"
|
43 |
+
],
|
44 |
+
"llm_int8_threshold": 6.0,
|
45 |
+
"load_in_4bit": false,
|
46 |
+
"load_in_8bit": true,
|
47 |
+
"quant_method": "bitsandbytes"
|
48 |
+
},
|
49 |
+
"torch_dtype": "float16",
|
50 |
+
"transformers_version": "4.46.2",
|
51 |
+
"use_cache": true,
|
52 |
+
"vocab_size": 65026,
|
53 |
+
"api_key": null
|
54 |
+
}
|
configuration_falcon.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Falcon configuration"""
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
+
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
24 |
+
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class FalconConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the
|
33 |
+
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 65024):
|
41 |
+
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`FalconModel`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 4544):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer decoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 71):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
50 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
51 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
52 |
+
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
53 |
+
`config.is_decoder=True`.
|
54 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
55 |
+
The epsilon used by the layer normalization layers.
|
56 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout probability for MLP layers.
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout probability for attention layers.
|
60 |
+
num_kv_heads (`int`, *optional*):
|
61 |
+
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
62 |
+
`num_attention_heads`.
|
63 |
+
alibi (`bool`, *optional*, defaults to `False`):
|
64 |
+
Whether to use ALiBi positional biases during self-attention.
|
65 |
+
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
67 |
+
arguments are ignored, as the new decoder always uses parallel attention.
|
68 |
+
multi_query (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
70 |
+
parallel_attn (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
72 |
+
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
73 |
+
bias (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to use bias on Linear layers.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 11):
|
76 |
+
The id of the "beginning-of-sequence" token.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 11):
|
78 |
+
The id of the "end-of-sequence" token.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import FalconModel, FalconConfig
|
84 |
+
|
85 |
+
>>> # Initializing a small (2-layer) Falcon configuration
|
86 |
+
>>> configuration = FalconConfig(num_hidden_layers=2)
|
87 |
+
|
88 |
+
>>> # Initializing a model from the small configuration
|
89 |
+
>>> model = FalconModel(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
model_type = "falcon"
|
95 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vocab_size=65024,
|
100 |
+
hidden_size=4544,
|
101 |
+
num_hidden_layers=32,
|
102 |
+
num_attention_heads=71,
|
103 |
+
layer_norm_epsilon=1e-5,
|
104 |
+
initializer_range=0.02,
|
105 |
+
use_cache=True,
|
106 |
+
hidden_dropout=0.0,
|
107 |
+
attention_dropout=0.0,
|
108 |
+
num_kv_heads=None,
|
109 |
+
alibi=False,
|
110 |
+
new_decoder_architecture=False,
|
111 |
+
multi_query=True,
|
112 |
+
parallel_attn=True,
|
113 |
+
bias=False,
|
114 |
+
bos_token_id=11,
|
115 |
+
eos_token_id=11,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
logger.warning_once(
|
119 |
+
"\nWARNING: You are currently loading Falcon using legacy code contained in the model repository. Falcon has now been fully ported into the Hugging Face transformers library. "
|
120 |
+
"For the most up-to-date and high-performance version of the Falcon model code, please update to the latest version of transformers and then load the model "
|
121 |
+
"without the trust_remote_code=True argument.\n"
|
122 |
+
)
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
# Backward compatibility with n_embed kwarg
|
125 |
+
n_embed = kwargs.pop("n_embed", None)
|
126 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
127 |
+
self.num_hidden_layers = num_hidden_layers
|
128 |
+
self.num_attention_heads = num_attention_heads
|
129 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
130 |
+
self.initializer_range = initializer_range
|
131 |
+
self.use_cache = use_cache
|
132 |
+
self.hidden_dropout = hidden_dropout
|
133 |
+
self.attention_dropout = attention_dropout
|
134 |
+
|
135 |
+
self.bos_token_id = bos_token_id
|
136 |
+
self.eos_token_id = eos_token_id
|
137 |
+
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
138 |
+
self.alibi = alibi
|
139 |
+
self.new_decoder_architecture = new_decoder_architecture
|
140 |
+
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
|
141 |
+
self.parallel_attn = parallel_attn
|
142 |
+
self.bias = bias
|
143 |
+
|
144 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
145 |
+
|
146 |
+
@property
|
147 |
+
def head_dim(self):
|
148 |
+
return self.hidden_size // self.num_attention_heads
|
149 |
+
|
150 |
+
@property
|
151 |
+
def rotary(self):
|
152 |
+
return not self.alibi
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 65024,
|
4 |
+
"eos_token_id": 65025,
|
5 |
+
"pad_token_id": 65025,
|
6 |
+
"transformers_version": "4.46.2"
|
7 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70859c32417fc23d2909ee6b3f37a3bfc660b429ef69ebbc15eeda905c5073de
|
3 |
+
size 4984250502
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d96367e852b8874b062ffd087fc12902f0d3f721ad4967c5a4dc00bdf729a631
|
3 |
+
size 2237397050
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 7221595776
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"transformer.h.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
7 |
+
"transformer.h.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"transformer.h.0.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
9 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
11 |
+
"transformer.h.0.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
12 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
14 |
+
"transformer.h.0.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
15 |
+
"transformer.h.0.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"transformer.h.0.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
17 |
+
"transformer.h.0.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
18 |
+
"transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"transformer.h.0.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
20 |
+
"transformer.h.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
21 |
+
"transformer.h.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"transformer.h.1.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
23 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
25 |
+
"transformer.h.1.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
26 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
28 |
+
"transformer.h.1.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
29 |
+
"transformer.h.1.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"transformer.h.1.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
31 |
+
"transformer.h.1.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
32 |
+
"transformer.h.1.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"transformer.h.1.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
34 |
+
"transformer.h.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
35 |
+
"transformer.h.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"transformer.h.10.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
37 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
39 |
+
"transformer.h.10.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
40 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
42 |
+
"transformer.h.10.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
43 |
+
"transformer.h.10.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"transformer.h.10.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
45 |
+
"transformer.h.10.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
46 |
+
"transformer.h.10.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"transformer.h.10.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
48 |
+
"transformer.h.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"transformer.h.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"transformer.h.11.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
51 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
53 |
+
"transformer.h.11.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
54 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
56 |
+
"transformer.h.11.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
57 |
+
"transformer.h.11.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"transformer.h.11.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
59 |
+
"transformer.h.11.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
60 |
+
"transformer.h.11.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"transformer.h.11.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
62 |
+
"transformer.h.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
63 |
+
"transformer.h.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"transformer.h.12.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
65 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
67 |
+
"transformer.h.12.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
68 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
70 |
+
"transformer.h.12.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
71 |
+
"transformer.h.12.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"transformer.h.12.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
73 |
+
"transformer.h.12.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
74 |
+
"transformer.h.12.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"transformer.h.12.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
76 |
+
"transformer.h.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"transformer.h.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"transformer.h.13.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
79 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
81 |
+
"transformer.h.13.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
82 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
84 |
+
"transformer.h.13.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
85 |
+
"transformer.h.13.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"transformer.h.13.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
87 |
+
"transformer.h.13.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
88 |
+
"transformer.h.13.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"transformer.h.13.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
90 |
+
"transformer.h.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"transformer.h.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"transformer.h.14.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
93 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
95 |
+
"transformer.h.14.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
96 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
98 |
+
"transformer.h.14.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
99 |
+
"transformer.h.14.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"transformer.h.14.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
101 |
+
"transformer.h.14.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
102 |
+
"transformer.h.14.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"transformer.h.14.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
104 |
+
"transformer.h.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
105 |
+
"transformer.h.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"transformer.h.15.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
107 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
109 |
+
"transformer.h.15.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
110 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
112 |
+
"transformer.h.15.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
113 |
+
"transformer.h.15.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"transformer.h.15.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
115 |
+
"transformer.h.15.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
116 |
+
"transformer.h.15.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"transformer.h.15.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
118 |
+
"transformer.h.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
119 |
+
"transformer.h.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"transformer.h.16.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
121 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
123 |
+
"transformer.h.16.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
124 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
126 |
+
"transformer.h.16.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
127 |
+
"transformer.h.16.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"transformer.h.16.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
129 |
+
"transformer.h.16.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
130 |
+
"transformer.h.16.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"transformer.h.16.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
132 |
+
"transformer.h.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"transformer.h.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"transformer.h.17.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
135 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
137 |
+
"transformer.h.17.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
138 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
140 |
+
"transformer.h.17.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
141 |
+
"transformer.h.17.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"transformer.h.17.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
143 |
+
"transformer.h.17.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
144 |
+
"transformer.h.17.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"transformer.h.17.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
146 |
+
"transformer.h.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
147 |
+
"transformer.h.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"transformer.h.18.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
149 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
151 |
+
"transformer.h.18.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
152 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
154 |
+
"transformer.h.18.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
155 |
+
"transformer.h.18.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"transformer.h.18.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
157 |
+
"transformer.h.18.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
158 |
+
"transformer.h.18.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"transformer.h.18.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
160 |
+
"transformer.h.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"transformer.h.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"transformer.h.19.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
163 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
165 |
+
"transformer.h.19.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
166 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
168 |
+
"transformer.h.19.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
169 |
+
"transformer.h.19.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"transformer.h.19.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
171 |
+
"transformer.h.19.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
172 |
+
"transformer.h.19.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"transformer.h.19.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
174 |
+
"transformer.h.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"transformer.h.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"transformer.h.2.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
177 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
179 |
+
"transformer.h.2.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
180 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
182 |
+
"transformer.h.2.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
183 |
+
"transformer.h.2.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"transformer.h.2.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
185 |
+
"transformer.h.2.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
186 |
+
"transformer.h.2.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"transformer.h.2.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
188 |
+
"transformer.h.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
189 |
+
"transformer.h.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"transformer.h.20.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
191 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
193 |
+
"transformer.h.20.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
194 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
196 |
+
"transformer.h.20.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
197 |
+
"transformer.h.20.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"transformer.h.20.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
199 |
+
"transformer.h.20.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
200 |
+
"transformer.h.20.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"transformer.h.20.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
202 |
+
"transformer.h.21.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
203 |
+
"transformer.h.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"transformer.h.21.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
205 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
207 |
+
"transformer.h.21.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
208 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
210 |
+
"transformer.h.21.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
211 |
+
"transformer.h.21.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"transformer.h.21.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
213 |
+
"transformer.h.21.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
214 |
+
"transformer.h.21.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"transformer.h.21.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
216 |
+
"transformer.h.22.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
217 |
+
"transformer.h.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"transformer.h.22.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
219 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
220 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
221 |
+
"transformer.h.22.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
222 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
224 |
+
"transformer.h.22.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
225 |
+
"transformer.h.22.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"transformer.h.22.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
227 |
+
"transformer.h.22.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
228 |
+
"transformer.h.22.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"transformer.h.22.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
230 |
+
"transformer.h.23.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
231 |
+
"transformer.h.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"transformer.h.23.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
233 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
235 |
+
"transformer.h.23.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
236 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
238 |
+
"transformer.h.23.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
239 |
+
"transformer.h.23.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"transformer.h.23.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
241 |
+
"transformer.h.23.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
242 |
+
"transformer.h.23.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"transformer.h.23.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
244 |
+
"transformer.h.24.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
245 |
+
"transformer.h.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
246 |
+
"transformer.h.24.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
247 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
249 |
+
"transformer.h.24.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
250 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
252 |
+
"transformer.h.24.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
253 |
+
"transformer.h.24.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"transformer.h.24.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
255 |
+
"transformer.h.24.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
256 |
+
"transformer.h.24.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"transformer.h.24.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
258 |
+
"transformer.h.25.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
259 |
+
"transformer.h.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"transformer.h.25.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
261 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
263 |
+
"transformer.h.25.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
264 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
266 |
+
"transformer.h.25.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
267 |
+
"transformer.h.25.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
268 |
+
"transformer.h.25.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
269 |
+
"transformer.h.25.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
270 |
+
"transformer.h.25.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
271 |
+
"transformer.h.25.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
272 |
+
"transformer.h.26.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
273 |
+
"transformer.h.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"transformer.h.26.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
275 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
277 |
+
"transformer.h.26.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
278 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
280 |
+
"transformer.h.26.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
281 |
+
"transformer.h.26.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"transformer.h.26.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
283 |
+
"transformer.h.26.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
284 |
+
"transformer.h.26.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
285 |
+
"transformer.h.26.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
286 |
+
"transformer.h.27.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
287 |
+
"transformer.h.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"transformer.h.27.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
289 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
290 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
291 |
+
"transformer.h.27.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
292 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
293 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
294 |
+
"transformer.h.27.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
295 |
+
"transformer.h.27.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"transformer.h.27.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
297 |
+
"transformer.h.27.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
298 |
+
"transformer.h.27.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"transformer.h.27.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
300 |
+
"transformer.h.28.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
301 |
+
"transformer.h.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"transformer.h.28.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
303 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
305 |
+
"transformer.h.28.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
306 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
308 |
+
"transformer.h.28.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
309 |
+
"transformer.h.28.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"transformer.h.28.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
311 |
+
"transformer.h.28.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
312 |
+
"transformer.h.28.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"transformer.h.28.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
314 |
+
"transformer.h.29.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
315 |
+
"transformer.h.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"transformer.h.29.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
317 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
319 |
+
"transformer.h.29.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
320 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
322 |
+
"transformer.h.29.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
323 |
+
"transformer.h.29.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"transformer.h.29.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
325 |
+
"transformer.h.29.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
326 |
+
"transformer.h.29.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"transformer.h.29.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
328 |
+
"transformer.h.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
329 |
+
"transformer.h.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
330 |
+
"transformer.h.3.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
331 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
333 |
+
"transformer.h.3.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
334 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
336 |
+
"transformer.h.3.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
337 |
+
"transformer.h.3.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"transformer.h.3.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
339 |
+
"transformer.h.3.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
340 |
+
"transformer.h.3.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"transformer.h.3.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
342 |
+
"transformer.h.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"transformer.h.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"transformer.h.30.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
345 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
347 |
+
"transformer.h.30.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
348 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
350 |
+
"transformer.h.30.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
351 |
+
"transformer.h.30.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"transformer.h.30.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
353 |
+
"transformer.h.30.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
354 |
+
"transformer.h.30.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
355 |
+
"transformer.h.30.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
356 |
+
"transformer.h.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
357 |
+
"transformer.h.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"transformer.h.31.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
|
359 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
|
361 |
+
"transformer.h.31.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
|
362 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
|
364 |
+
"transformer.h.31.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
|
365 |
+
"transformer.h.31.self_attention.dense.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"transformer.h.31.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
|
367 |
+
"transformer.h.31.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
|
368 |
+
"transformer.h.31.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
369 |
+
"transformer.h.31.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
|
370 |
+
"transformer.h.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
371 |
+
"transformer.h.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"transformer.h.4.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
373 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
375 |
+
"transformer.h.4.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
376 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
378 |
+
"transformer.h.4.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
379 |
+
"transformer.h.4.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"transformer.h.4.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
381 |
+
"transformer.h.4.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
382 |
+
"transformer.h.4.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"transformer.h.4.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
384 |
+
"transformer.h.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
385 |
+
"transformer.h.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"transformer.h.5.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
387 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
389 |
+
"transformer.h.5.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
390 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
392 |
+
"transformer.h.5.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
393 |
+
"transformer.h.5.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"transformer.h.5.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
395 |
+
"transformer.h.5.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
396 |
+
"transformer.h.5.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"transformer.h.5.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
398 |
+
"transformer.h.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
399 |
+
"transformer.h.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"transformer.h.6.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
401 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
403 |
+
"transformer.h.6.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
404 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
406 |
+
"transformer.h.6.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
407 |
+
"transformer.h.6.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"transformer.h.6.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
409 |
+
"transformer.h.6.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
410 |
+
"transformer.h.6.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"transformer.h.6.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
412 |
+
"transformer.h.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"transformer.h.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"transformer.h.7.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
415 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
417 |
+
"transformer.h.7.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
418 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
420 |
+
"transformer.h.7.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
421 |
+
"transformer.h.7.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"transformer.h.7.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
423 |
+
"transformer.h.7.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
424 |
+
"transformer.h.7.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"transformer.h.7.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
426 |
+
"transformer.h.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"transformer.h.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"transformer.h.8.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
429 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
431 |
+
"transformer.h.8.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
432 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
434 |
+
"transformer.h.8.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
435 |
+
"transformer.h.8.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"transformer.h.8.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
437 |
+
"transformer.h.8.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
438 |
+
"transformer.h.8.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"transformer.h.8.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
440 |
+
"transformer.h.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
441 |
+
"transformer.h.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
442 |
+
"transformer.h.9.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
|
443 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
444 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
|
445 |
+
"transformer.h.9.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
|
446 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
447 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
|
448 |
+
"transformer.h.9.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
|
449 |
+
"transformer.h.9.self_attention.dense.weight": "model-00001-of-00002.safetensors",
|
450 |
+
"transformer.h.9.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
|
451 |
+
"transformer.h.9.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
|
452 |
+
"transformer.h.9.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
453 |
+
"transformer.h.9.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
|
454 |
+
"transformer.ln_f.bias": "model-00002-of-00002.safetensors",
|
455 |
+
"transformer.ln_f.weight": "model-00002-of-00002.safetensors",
|
456 |
+
"transformer.word_embeddings.weight": "model-00001-of-00002.safetensors"
|
457 |
+
}
|
458 |
+
}
|
smash_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"comp_cgenerate_active": false,
|
3 |
+
"comp_ctranslate_active": false,
|
4 |
+
"comp_cwhisper_active": false,
|
5 |
+
"comp_diffusers2_active": false,
|
6 |
+
"comp_ifw_active": false,
|
7 |
+
"comp_onediff_active": false,
|
8 |
+
"comp_step_caching_active": false,
|
9 |
+
"comp_torch_compile_active": false,
|
10 |
+
"comp_ws2t_active": false,
|
11 |
+
"comp_x-fast_active": false,
|
12 |
+
"prune_torch-structured_active": false,
|
13 |
+
"quant_aqlm_active": false,
|
14 |
+
"quant_awq_active": false,
|
15 |
+
"quant_gptq_active": false,
|
16 |
+
"quant_half_active": false,
|
17 |
+
"quant_hqq_active": false,
|
18 |
+
"quant_llm-int8_active": true,
|
19 |
+
"quant_quanto_active": false,
|
20 |
+
"quant_torch_dynamic_active": false,
|
21 |
+
"quant_torch_static_active": false,
|
22 |
+
"quant_llm-int8_compute_dtype": "bfloat16",
|
23 |
+
"quant_llm-int8_double_quant": false,
|
24 |
+
"quant_llm-int8_enable_fp32_cpu_offload": false,
|
25 |
+
"quant_llm-int8_has_fp16_weight": false,
|
26 |
+
"quant_llm-int8_quant_type": "fp4",
|
27 |
+
"quant_llm-int8_threshold": 6.0,
|
28 |
+
"quant_llm-int8_weight_bits": 8,
|
29 |
+
"max_batch_size": 1,
|
30 |
+
"device": "cuda",
|
31 |
+
"cache_dir": "/covalent/.cache/models/tmp3kfv_gz9",
|
32 |
+
"task": "",
|
33 |
+
"save_load_fn": "bitsandbytes",
|
34 |
+
"save_load_fn_args": {}
|
35 |
+
}
|