sharpenb commited on
Commit
e58f0e1
·
verified ·
1 Parent(s): 2134a72

Upload folder using huggingface_hub (#1)

Browse files

- 58141ac9d879c55a6b1d152801e1443516236f833de1b6cb6306fecc22fac4ef (d080d8c093653f23816136dc39c97a6d74dca993)
- 914bff5af503bdda7a82dffd3fa8251caa61a82ab6994bffa5be0e325e08986d (a78c0d71cae3cebf1bb1222807f6903a8d4ab29c)
- c5a135d78eed281e4d654d8e308ad70cacbd134834411f1d565c41c53e68fc68 (b991d127ce27220ed99ade67bc622e61d23e8a68)

README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ base_model: aman-augurs/duble-merge
4
+ metrics:
5
+ - memory_disk
6
+ - memory_inference
7
+ - inference_latency
8
+ - inference_throughput
9
+ - inference_CO2_emissions
10
+ - inference_energy_consumption
11
+ tags:
12
+ - pruna-ai
13
+ ---
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer">
18
+ <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </a>
20
+ </div>
21
+ <!-- header end -->
22
+
23
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
24
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
25
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
26
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
27
+
28
+ # Simply make AI models cheaper, smaller, faster, and greener!
29
+
30
+ - Give a thumbs up if you like this model!
31
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
32
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
33
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
34
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
35
+
36
+ ## Results
37
+
38
+ ![image info](./plots.png)
39
+
40
+ **Frequently Asked Questions**
41
+ - ***How does the compression work?*** The model is compressed with llm-int8.
42
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
43
+ - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
44
+ - ***What is the model format?*** We use safetensors.
45
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
46
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
47
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
48
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
49
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
50
+
51
+ ## Setup
52
+
53
+ You can run the smashed model with these steps:
54
+
55
+ 0. Check requirements from the original repo aman-augurs/duble-merge installed. In particular, check python, cuda, and transformers versions.
56
+ 1. Make sure that you have installed quantization related packages.
57
+ ```bash
58
+ pip install transformers accelerate bitsandbytes>0.37.0
59
+ ```
60
+ 2. Load & run the model.
61
+ ```python
62
+ from transformers import AutoModelForCausalLM, AutoTokenizer
63
+
64
+
65
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/aman-augurs-duble-merge-bnb-8bit-smashed", trust_remote_code=True, device_map='auto')
66
+ tokenizer = AutoTokenizer.from_pretrained("aman-augurs/duble-merge")
67
+
68
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
69
+
70
+ outputs = model.generate(input_ids, max_new_tokens=216)
71
+ tokenizer.decode(outputs[0])
72
+ ```
73
+
74
+ ## Configurations
75
+
76
+ The configuration info are in `smash_config.json`.
77
+
78
+ ## Credits & License
79
+
80
+ The license of the smashed model follows the license of the original model. Please check the license of the original model aman-augurs/duble-merge before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
81
+
82
+ ## Want to compress other models?
83
+
84
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
85
+ - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/covalent/.cache/models/tmp3kfv_gz97cby61cu",
3
+ "alibi": false,
4
+ "apply_residual_connection_post_layernorm": false,
5
+ "architectures": [
6
+ "FalconForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_falcon.FalconConfig",
11
+ "AutoModel": "tiiuae/falcon-7b--modeling_falcon.FalconModel",
12
+ "AutoModelForCausalLM": "tiiuae/falcon-7b--modeling_falcon.FalconForCausalLM",
13
+ "AutoModelForQuestionAnswering": "tiiuae/falcon-7b--modeling_falcon.FalconForQuestionAnswering",
14
+ "AutoModelForSequenceClassification": "tiiuae/falcon-7b--modeling_falcon.FalconForSequenceClassification",
15
+ "AutoModelForTokenClassification": "tiiuae/falcon-7b--modeling_falcon.FalconForTokenClassification"
16
+ },
17
+ "bias": false,
18
+ "bos_token_id": 65024,
19
+ "eos_token_id": 65025,
20
+ "hidden_dropout": 0.0,
21
+ "hidden_size": 4544,
22
+ "initializer_range": 0.02,
23
+ "layer_norm_epsilon": 1e-05,
24
+ "model_type": "falcon",
25
+ "multi_query": true,
26
+ "new_decoder_architecture": false,
27
+ "num_attention_heads": 71,
28
+ "num_hidden_layers": 32,
29
+ "num_kv_heads": 71,
30
+ "pad_token_id": 65025,
31
+ "parallel_attn": true,
32
+ "quantization_config": {
33
+ "_load_in_4bit": false,
34
+ "_load_in_8bit": true,
35
+ "bnb_4bit_compute_dtype": "bfloat16",
36
+ "bnb_4bit_quant_storage": "uint8",
37
+ "bnb_4bit_quant_type": "fp4",
38
+ "bnb_4bit_use_double_quant": false,
39
+ "llm_int8_enable_fp32_cpu_offload": false,
40
+ "llm_int8_has_fp16_weight": false,
41
+ "llm_int8_skip_modules": [
42
+ "lm_head"
43
+ ],
44
+ "llm_int8_threshold": 6.0,
45
+ "load_in_4bit": false,
46
+ "load_in_8bit": true,
47
+ "quant_method": "bitsandbytes"
48
+ },
49
+ "torch_dtype": "float16",
50
+ "transformers_version": "4.46.2",
51
+ "use_cache": true,
52
+ "vocab_size": 65026,
53
+ "api_key": null
54
+ }
configuration_falcon.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Falcon configuration"""
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
24
+ "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
25
+ }
26
+
27
+
28
+ class FalconConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
31
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
32
+ defaults will yield a similar configuration to that of the
33
+ [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 65024):
41
+ Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`FalconModel`]
43
+ hidden_size (`int`, *optional*, defaults to 4544):
44
+ Dimension of the hidden representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer decoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 71):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ initializer_range (`float`, *optional*, defaults to 0.02):
50
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
51
+ use_cache (`bool`, *optional*, defaults to `True`):
52
+ Whether the model should return the last key/values attentions (not used by all models). Only relevant if
53
+ `config.is_decoder=True`.
54
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
55
+ The epsilon used by the layer normalization layers.
56
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
57
+ The dropout probability for MLP layers.
58
+ attention_dropout (`float`, *optional*, defaults to 0.0):
59
+ The dropout probability for attention layers.
60
+ num_kv_heads (`int`, *optional*):
61
+ Number of key-value heads to use per attention layer. If unset, defaults to the same value as
62
+ `num_attention_heads`.
63
+ alibi (`bool`, *optional*, defaults to `False`):
64
+ Whether to use ALiBi positional biases during self-attention.
65
+ new_decoder_architecture (`bool`, *optional*, defaults to `False`):
66
+ Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
67
+ arguments are ignored, as the new decoder always uses parallel attention.
68
+ multi_query (`bool`, *optional*, defaults to `True`):
69
+ Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
70
+ parallel_attn (`bool`, *optional*, defaults to `True`):
71
+ Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
72
+ instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
73
+ bias (`bool`, *optional*, defaults to `False`):
74
+ Whether to use bias on Linear layers.
75
+ bos_token_id (`int`, *optional*, defaults to 11):
76
+ The id of the "beginning-of-sequence" token.
77
+ eos_token_id (`int`, *optional*, defaults to 11):
78
+ The id of the "end-of-sequence" token.
79
+
80
+ Example:
81
+
82
+ ```python
83
+ >>> from transformers import FalconModel, FalconConfig
84
+
85
+ >>> # Initializing a small (2-layer) Falcon configuration
86
+ >>> configuration = FalconConfig(num_hidden_layers=2)
87
+
88
+ >>> # Initializing a model from the small configuration
89
+ >>> model = FalconModel(configuration)
90
+
91
+ >>> # Accessing the model configuration
92
+ >>> configuration = model.config
93
+ ```"""
94
+ model_type = "falcon"
95
+ keys_to_ignore_at_inference = ["past_key_values"]
96
+
97
+ def __init__(
98
+ self,
99
+ vocab_size=65024,
100
+ hidden_size=4544,
101
+ num_hidden_layers=32,
102
+ num_attention_heads=71,
103
+ layer_norm_epsilon=1e-5,
104
+ initializer_range=0.02,
105
+ use_cache=True,
106
+ hidden_dropout=0.0,
107
+ attention_dropout=0.0,
108
+ num_kv_heads=None,
109
+ alibi=False,
110
+ new_decoder_architecture=False,
111
+ multi_query=True,
112
+ parallel_attn=True,
113
+ bias=False,
114
+ bos_token_id=11,
115
+ eos_token_id=11,
116
+ **kwargs,
117
+ ):
118
+ logger.warning_once(
119
+ "\nWARNING: You are currently loading Falcon using legacy code contained in the model repository. Falcon has now been fully ported into the Hugging Face transformers library. "
120
+ "For the most up-to-date and high-performance version of the Falcon model code, please update to the latest version of transformers and then load the model "
121
+ "without the trust_remote_code=True argument.\n"
122
+ )
123
+ self.vocab_size = vocab_size
124
+ # Backward compatibility with n_embed kwarg
125
+ n_embed = kwargs.pop("n_embed", None)
126
+ self.hidden_size = hidden_size if n_embed is None else n_embed
127
+ self.num_hidden_layers = num_hidden_layers
128
+ self.num_attention_heads = num_attention_heads
129
+ self.layer_norm_epsilon = layer_norm_epsilon
130
+ self.initializer_range = initializer_range
131
+ self.use_cache = use_cache
132
+ self.hidden_dropout = hidden_dropout
133
+ self.attention_dropout = attention_dropout
134
+
135
+ self.bos_token_id = bos_token_id
136
+ self.eos_token_id = eos_token_id
137
+ self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
138
+ self.alibi = alibi
139
+ self.new_decoder_architecture = new_decoder_architecture
140
+ self.multi_query = multi_query # Ignored when new_decoder_architecture is True
141
+ self.parallel_attn = parallel_attn
142
+ self.bias = bias
143
+
144
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
145
+
146
+ @property
147
+ def head_dim(self):
148
+ return self.hidden_size // self.num_attention_heads
149
+
150
+ @property
151
+ def rotary(self):
152
+ return not self.alibi
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 65024,
4
+ "eos_token_id": 65025,
5
+ "pad_token_id": 65025,
6
+ "transformers_version": "4.46.2"
7
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70859c32417fc23d2909ee6b3f37a3bfc660b429ef69ebbc15eeda905c5073de
3
+ size 4984250502
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d96367e852b8874b062ffd087fc12902f0d3f721ad4967c5a4dc00bdf729a631
3
+ size 2237397050
model.safetensors.index.json ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7221595776
4
+ },
5
+ "weight_map": {
6
+ "transformer.h.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
7
+ "transformer.h.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "transformer.h.0.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
9
+ "transformer.h.0.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
10
+ "transformer.h.0.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
11
+ "transformer.h.0.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
12
+ "transformer.h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
13
+ "transformer.h.0.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
14
+ "transformer.h.0.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
15
+ "transformer.h.0.self_attention.dense.weight": "model-00001-of-00002.safetensors",
16
+ "transformer.h.0.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
17
+ "transformer.h.0.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
18
+ "transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
19
+ "transformer.h.0.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
20
+ "transformer.h.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
21
+ "transformer.h.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "transformer.h.1.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
23
+ "transformer.h.1.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
24
+ "transformer.h.1.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
25
+ "transformer.h.1.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
26
+ "transformer.h.1.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
27
+ "transformer.h.1.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
28
+ "transformer.h.1.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
29
+ "transformer.h.1.self_attention.dense.weight": "model-00001-of-00002.safetensors",
30
+ "transformer.h.1.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
31
+ "transformer.h.1.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
32
+ "transformer.h.1.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
33
+ "transformer.h.1.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
34
+ "transformer.h.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
35
+ "transformer.h.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "transformer.h.10.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
37
+ "transformer.h.10.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
38
+ "transformer.h.10.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
39
+ "transformer.h.10.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
40
+ "transformer.h.10.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
41
+ "transformer.h.10.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
42
+ "transformer.h.10.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
43
+ "transformer.h.10.self_attention.dense.weight": "model-00001-of-00002.safetensors",
44
+ "transformer.h.10.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
45
+ "transformer.h.10.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
46
+ "transformer.h.10.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
47
+ "transformer.h.10.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
48
+ "transformer.h.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
49
+ "transformer.h.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
50
+ "transformer.h.11.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
51
+ "transformer.h.11.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
52
+ "transformer.h.11.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
53
+ "transformer.h.11.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
54
+ "transformer.h.11.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
55
+ "transformer.h.11.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
56
+ "transformer.h.11.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
57
+ "transformer.h.11.self_attention.dense.weight": "model-00001-of-00002.safetensors",
58
+ "transformer.h.11.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
59
+ "transformer.h.11.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
60
+ "transformer.h.11.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
61
+ "transformer.h.11.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
62
+ "transformer.h.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
63
+ "transformer.h.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
64
+ "transformer.h.12.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
65
+ "transformer.h.12.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
66
+ "transformer.h.12.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
67
+ "transformer.h.12.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
68
+ "transformer.h.12.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
69
+ "transformer.h.12.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
70
+ "transformer.h.12.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
71
+ "transformer.h.12.self_attention.dense.weight": "model-00001-of-00002.safetensors",
72
+ "transformer.h.12.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
73
+ "transformer.h.12.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
74
+ "transformer.h.12.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
75
+ "transformer.h.12.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
76
+ "transformer.h.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
77
+ "transformer.h.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "transformer.h.13.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
79
+ "transformer.h.13.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
80
+ "transformer.h.13.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
81
+ "transformer.h.13.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
82
+ "transformer.h.13.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
83
+ "transformer.h.13.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
84
+ "transformer.h.13.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
85
+ "transformer.h.13.self_attention.dense.weight": "model-00001-of-00002.safetensors",
86
+ "transformer.h.13.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
87
+ "transformer.h.13.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
88
+ "transformer.h.13.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
89
+ "transformer.h.13.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
90
+ "transformer.h.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
91
+ "transformer.h.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "transformer.h.14.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
93
+ "transformer.h.14.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
94
+ "transformer.h.14.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
95
+ "transformer.h.14.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
96
+ "transformer.h.14.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
97
+ "transformer.h.14.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
98
+ "transformer.h.14.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
99
+ "transformer.h.14.self_attention.dense.weight": "model-00001-of-00002.safetensors",
100
+ "transformer.h.14.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
101
+ "transformer.h.14.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
102
+ "transformer.h.14.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
103
+ "transformer.h.14.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
104
+ "transformer.h.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
105
+ "transformer.h.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
106
+ "transformer.h.15.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
107
+ "transformer.h.15.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
108
+ "transformer.h.15.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
109
+ "transformer.h.15.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
110
+ "transformer.h.15.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
111
+ "transformer.h.15.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
112
+ "transformer.h.15.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
113
+ "transformer.h.15.self_attention.dense.weight": "model-00001-of-00002.safetensors",
114
+ "transformer.h.15.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
115
+ "transformer.h.15.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
116
+ "transformer.h.15.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
117
+ "transformer.h.15.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
118
+ "transformer.h.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
119
+ "transformer.h.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "transformer.h.16.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
121
+ "transformer.h.16.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
122
+ "transformer.h.16.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
123
+ "transformer.h.16.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
124
+ "transformer.h.16.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
125
+ "transformer.h.16.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
126
+ "transformer.h.16.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
127
+ "transformer.h.16.self_attention.dense.weight": "model-00001-of-00002.safetensors",
128
+ "transformer.h.16.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
129
+ "transformer.h.16.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
130
+ "transformer.h.16.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
131
+ "transformer.h.16.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
132
+ "transformer.h.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
133
+ "transformer.h.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
134
+ "transformer.h.17.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
135
+ "transformer.h.17.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
136
+ "transformer.h.17.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
137
+ "transformer.h.17.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
138
+ "transformer.h.17.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
139
+ "transformer.h.17.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
140
+ "transformer.h.17.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
141
+ "transformer.h.17.self_attention.dense.weight": "model-00001-of-00002.safetensors",
142
+ "transformer.h.17.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
143
+ "transformer.h.17.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
144
+ "transformer.h.17.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
145
+ "transformer.h.17.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
146
+ "transformer.h.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
147
+ "transformer.h.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
148
+ "transformer.h.18.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
149
+ "transformer.h.18.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
150
+ "transformer.h.18.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
151
+ "transformer.h.18.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
152
+ "transformer.h.18.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
153
+ "transformer.h.18.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
154
+ "transformer.h.18.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
155
+ "transformer.h.18.self_attention.dense.weight": "model-00001-of-00002.safetensors",
156
+ "transformer.h.18.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
157
+ "transformer.h.18.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
158
+ "transformer.h.18.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
159
+ "transformer.h.18.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
160
+ "transformer.h.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
161
+ "transformer.h.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "transformer.h.19.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
163
+ "transformer.h.19.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
164
+ "transformer.h.19.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
165
+ "transformer.h.19.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
166
+ "transformer.h.19.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
167
+ "transformer.h.19.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
168
+ "transformer.h.19.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
169
+ "transformer.h.19.self_attention.dense.weight": "model-00001-of-00002.safetensors",
170
+ "transformer.h.19.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
171
+ "transformer.h.19.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
172
+ "transformer.h.19.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
173
+ "transformer.h.19.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
174
+ "transformer.h.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
175
+ "transformer.h.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
176
+ "transformer.h.2.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
177
+ "transformer.h.2.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
178
+ "transformer.h.2.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
179
+ "transformer.h.2.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
180
+ "transformer.h.2.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
181
+ "transformer.h.2.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
182
+ "transformer.h.2.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
183
+ "transformer.h.2.self_attention.dense.weight": "model-00001-of-00002.safetensors",
184
+ "transformer.h.2.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
185
+ "transformer.h.2.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
186
+ "transformer.h.2.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
187
+ "transformer.h.2.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
188
+ "transformer.h.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
189
+ "transformer.h.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
190
+ "transformer.h.20.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
191
+ "transformer.h.20.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
192
+ "transformer.h.20.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
193
+ "transformer.h.20.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
194
+ "transformer.h.20.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
195
+ "transformer.h.20.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
196
+ "transformer.h.20.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
197
+ "transformer.h.20.self_attention.dense.weight": "model-00001-of-00002.safetensors",
198
+ "transformer.h.20.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
199
+ "transformer.h.20.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
200
+ "transformer.h.20.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
201
+ "transformer.h.20.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
202
+ "transformer.h.21.input_layernorm.bias": "model-00002-of-00002.safetensors",
203
+ "transformer.h.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "transformer.h.21.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
205
+ "transformer.h.21.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
206
+ "transformer.h.21.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
207
+ "transformer.h.21.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
208
+ "transformer.h.21.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
209
+ "transformer.h.21.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
210
+ "transformer.h.21.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
211
+ "transformer.h.21.self_attention.dense.weight": "model-00001-of-00002.safetensors",
212
+ "transformer.h.21.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
213
+ "transformer.h.21.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
214
+ "transformer.h.21.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
215
+ "transformer.h.21.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
216
+ "transformer.h.22.input_layernorm.bias": "model-00002-of-00002.safetensors",
217
+ "transformer.h.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
218
+ "transformer.h.22.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
219
+ "transformer.h.22.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
220
+ "transformer.h.22.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
221
+ "transformer.h.22.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
222
+ "transformer.h.22.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
223
+ "transformer.h.22.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
224
+ "transformer.h.22.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
225
+ "transformer.h.22.self_attention.dense.weight": "model-00002-of-00002.safetensors",
226
+ "transformer.h.22.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
227
+ "transformer.h.22.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
228
+ "transformer.h.22.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
229
+ "transformer.h.22.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
230
+ "transformer.h.23.input_layernorm.bias": "model-00002-of-00002.safetensors",
231
+ "transformer.h.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
232
+ "transformer.h.23.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
233
+ "transformer.h.23.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
234
+ "transformer.h.23.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
235
+ "transformer.h.23.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
236
+ "transformer.h.23.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
237
+ "transformer.h.23.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
238
+ "transformer.h.23.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
239
+ "transformer.h.23.self_attention.dense.weight": "model-00002-of-00002.safetensors",
240
+ "transformer.h.23.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
241
+ "transformer.h.23.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
242
+ "transformer.h.23.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
243
+ "transformer.h.23.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
244
+ "transformer.h.24.input_layernorm.bias": "model-00002-of-00002.safetensors",
245
+ "transformer.h.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
246
+ "transformer.h.24.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
247
+ "transformer.h.24.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
248
+ "transformer.h.24.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
249
+ "transformer.h.24.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
250
+ "transformer.h.24.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
251
+ "transformer.h.24.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
252
+ "transformer.h.24.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
253
+ "transformer.h.24.self_attention.dense.weight": "model-00002-of-00002.safetensors",
254
+ "transformer.h.24.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
255
+ "transformer.h.24.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
256
+ "transformer.h.24.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
257
+ "transformer.h.24.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
258
+ "transformer.h.25.input_layernorm.bias": "model-00002-of-00002.safetensors",
259
+ "transformer.h.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "transformer.h.25.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
261
+ "transformer.h.25.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
262
+ "transformer.h.25.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
263
+ "transformer.h.25.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
264
+ "transformer.h.25.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
265
+ "transformer.h.25.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
266
+ "transformer.h.25.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
267
+ "transformer.h.25.self_attention.dense.weight": "model-00002-of-00002.safetensors",
268
+ "transformer.h.25.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
269
+ "transformer.h.25.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
270
+ "transformer.h.25.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
271
+ "transformer.h.25.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
272
+ "transformer.h.26.input_layernorm.bias": "model-00002-of-00002.safetensors",
273
+ "transformer.h.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
274
+ "transformer.h.26.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
275
+ "transformer.h.26.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
276
+ "transformer.h.26.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
277
+ "transformer.h.26.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
278
+ "transformer.h.26.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
279
+ "transformer.h.26.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
280
+ "transformer.h.26.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
281
+ "transformer.h.26.self_attention.dense.weight": "model-00002-of-00002.safetensors",
282
+ "transformer.h.26.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
283
+ "transformer.h.26.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
284
+ "transformer.h.26.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
285
+ "transformer.h.26.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
286
+ "transformer.h.27.input_layernorm.bias": "model-00002-of-00002.safetensors",
287
+ "transformer.h.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
288
+ "transformer.h.27.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
289
+ "transformer.h.27.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
290
+ "transformer.h.27.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
291
+ "transformer.h.27.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
292
+ "transformer.h.27.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
293
+ "transformer.h.27.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
294
+ "transformer.h.27.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
295
+ "transformer.h.27.self_attention.dense.weight": "model-00002-of-00002.safetensors",
296
+ "transformer.h.27.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
297
+ "transformer.h.27.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
298
+ "transformer.h.27.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
299
+ "transformer.h.27.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
300
+ "transformer.h.28.input_layernorm.bias": "model-00002-of-00002.safetensors",
301
+ "transformer.h.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
302
+ "transformer.h.28.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
303
+ "transformer.h.28.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
304
+ "transformer.h.28.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
305
+ "transformer.h.28.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
306
+ "transformer.h.28.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
307
+ "transformer.h.28.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
308
+ "transformer.h.28.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
309
+ "transformer.h.28.self_attention.dense.weight": "model-00002-of-00002.safetensors",
310
+ "transformer.h.28.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
311
+ "transformer.h.28.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
312
+ "transformer.h.28.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
313
+ "transformer.h.28.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
314
+ "transformer.h.29.input_layernorm.bias": "model-00002-of-00002.safetensors",
315
+ "transformer.h.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
316
+ "transformer.h.29.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
317
+ "transformer.h.29.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
318
+ "transformer.h.29.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
319
+ "transformer.h.29.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
320
+ "transformer.h.29.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
321
+ "transformer.h.29.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
322
+ "transformer.h.29.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
323
+ "transformer.h.29.self_attention.dense.weight": "model-00002-of-00002.safetensors",
324
+ "transformer.h.29.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
325
+ "transformer.h.29.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
326
+ "transformer.h.29.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
327
+ "transformer.h.29.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
328
+ "transformer.h.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
329
+ "transformer.h.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
330
+ "transformer.h.3.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
331
+ "transformer.h.3.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
332
+ "transformer.h.3.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
333
+ "transformer.h.3.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
334
+ "transformer.h.3.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
335
+ "transformer.h.3.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
336
+ "transformer.h.3.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
337
+ "transformer.h.3.self_attention.dense.weight": "model-00001-of-00002.safetensors",
338
+ "transformer.h.3.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
339
+ "transformer.h.3.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
340
+ "transformer.h.3.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
341
+ "transformer.h.3.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
342
+ "transformer.h.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
343
+ "transformer.h.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "transformer.h.30.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
345
+ "transformer.h.30.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
346
+ "transformer.h.30.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
347
+ "transformer.h.30.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
348
+ "transformer.h.30.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
349
+ "transformer.h.30.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
350
+ "transformer.h.30.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
351
+ "transformer.h.30.self_attention.dense.weight": "model-00002-of-00002.safetensors",
352
+ "transformer.h.30.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
353
+ "transformer.h.30.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
354
+ "transformer.h.30.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
355
+ "transformer.h.30.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
356
+ "transformer.h.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
357
+ "transformer.h.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
358
+ "transformer.h.31.mlp.dense_4h_to_h.SCB": "model-00002-of-00002.safetensors",
359
+ "transformer.h.31.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
360
+ "transformer.h.31.mlp.dense_4h_to_h.weight_format": "model-00002-of-00002.safetensors",
361
+ "transformer.h.31.mlp.dense_h_to_4h.SCB": "model-00002-of-00002.safetensors",
362
+ "transformer.h.31.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
363
+ "transformer.h.31.mlp.dense_h_to_4h.weight_format": "model-00002-of-00002.safetensors",
364
+ "transformer.h.31.self_attention.dense.SCB": "model-00002-of-00002.safetensors",
365
+ "transformer.h.31.self_attention.dense.weight": "model-00002-of-00002.safetensors",
366
+ "transformer.h.31.self_attention.dense.weight_format": "model-00002-of-00002.safetensors",
367
+ "transformer.h.31.self_attention.query_key_value.SCB": "model-00002-of-00002.safetensors",
368
+ "transformer.h.31.self_attention.query_key_value.weight": "model-00002-of-00002.safetensors",
369
+ "transformer.h.31.self_attention.query_key_value.weight_format": "model-00002-of-00002.safetensors",
370
+ "transformer.h.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
371
+ "transformer.h.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "transformer.h.4.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
373
+ "transformer.h.4.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
374
+ "transformer.h.4.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
375
+ "transformer.h.4.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
376
+ "transformer.h.4.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
377
+ "transformer.h.4.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
378
+ "transformer.h.4.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
379
+ "transformer.h.4.self_attention.dense.weight": "model-00001-of-00002.safetensors",
380
+ "transformer.h.4.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
381
+ "transformer.h.4.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
382
+ "transformer.h.4.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
383
+ "transformer.h.4.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
384
+ "transformer.h.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
385
+ "transformer.h.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
386
+ "transformer.h.5.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
387
+ "transformer.h.5.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
388
+ "transformer.h.5.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
389
+ "transformer.h.5.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
390
+ "transformer.h.5.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
391
+ "transformer.h.5.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
392
+ "transformer.h.5.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
393
+ "transformer.h.5.self_attention.dense.weight": "model-00001-of-00002.safetensors",
394
+ "transformer.h.5.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
395
+ "transformer.h.5.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
396
+ "transformer.h.5.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
397
+ "transformer.h.5.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
398
+ "transformer.h.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
399
+ "transformer.h.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
400
+ "transformer.h.6.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
401
+ "transformer.h.6.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
402
+ "transformer.h.6.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
403
+ "transformer.h.6.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
404
+ "transformer.h.6.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
405
+ "transformer.h.6.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
406
+ "transformer.h.6.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
407
+ "transformer.h.6.self_attention.dense.weight": "model-00001-of-00002.safetensors",
408
+ "transformer.h.6.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
409
+ "transformer.h.6.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
410
+ "transformer.h.6.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
411
+ "transformer.h.6.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
412
+ "transformer.h.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
413
+ "transformer.h.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
414
+ "transformer.h.7.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
415
+ "transformer.h.7.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
416
+ "transformer.h.7.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
417
+ "transformer.h.7.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
418
+ "transformer.h.7.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
419
+ "transformer.h.7.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
420
+ "transformer.h.7.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
421
+ "transformer.h.7.self_attention.dense.weight": "model-00001-of-00002.safetensors",
422
+ "transformer.h.7.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
423
+ "transformer.h.7.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
424
+ "transformer.h.7.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
425
+ "transformer.h.7.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
426
+ "transformer.h.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
427
+ "transformer.h.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "transformer.h.8.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
429
+ "transformer.h.8.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
430
+ "transformer.h.8.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
431
+ "transformer.h.8.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
432
+ "transformer.h.8.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
433
+ "transformer.h.8.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
434
+ "transformer.h.8.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
435
+ "transformer.h.8.self_attention.dense.weight": "model-00001-of-00002.safetensors",
436
+ "transformer.h.8.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
437
+ "transformer.h.8.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
438
+ "transformer.h.8.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
439
+ "transformer.h.8.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
440
+ "transformer.h.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
441
+ "transformer.h.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
442
+ "transformer.h.9.mlp.dense_4h_to_h.SCB": "model-00001-of-00002.safetensors",
443
+ "transformer.h.9.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
444
+ "transformer.h.9.mlp.dense_4h_to_h.weight_format": "model-00001-of-00002.safetensors",
445
+ "transformer.h.9.mlp.dense_h_to_4h.SCB": "model-00001-of-00002.safetensors",
446
+ "transformer.h.9.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
447
+ "transformer.h.9.mlp.dense_h_to_4h.weight_format": "model-00001-of-00002.safetensors",
448
+ "transformer.h.9.self_attention.dense.SCB": "model-00001-of-00002.safetensors",
449
+ "transformer.h.9.self_attention.dense.weight": "model-00001-of-00002.safetensors",
450
+ "transformer.h.9.self_attention.dense.weight_format": "model-00001-of-00002.safetensors",
451
+ "transformer.h.9.self_attention.query_key_value.SCB": "model-00001-of-00002.safetensors",
452
+ "transformer.h.9.self_attention.query_key_value.weight": "model-00001-of-00002.safetensors",
453
+ "transformer.h.9.self_attention.query_key_value.weight_format": "model-00001-of-00002.safetensors",
454
+ "transformer.ln_f.bias": "model-00002-of-00002.safetensors",
455
+ "transformer.ln_f.weight": "model-00002-of-00002.safetensors",
456
+ "transformer.word_embeddings.weight": "model-00001-of-00002.safetensors"
457
+ }
458
+ }
smash_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "comp_cgenerate_active": false,
3
+ "comp_ctranslate_active": false,
4
+ "comp_cwhisper_active": false,
5
+ "comp_diffusers2_active": false,
6
+ "comp_ifw_active": false,
7
+ "comp_onediff_active": false,
8
+ "comp_step_caching_active": false,
9
+ "comp_torch_compile_active": false,
10
+ "comp_ws2t_active": false,
11
+ "comp_x-fast_active": false,
12
+ "prune_torch-structured_active": false,
13
+ "quant_aqlm_active": false,
14
+ "quant_awq_active": false,
15
+ "quant_gptq_active": false,
16
+ "quant_half_active": false,
17
+ "quant_hqq_active": false,
18
+ "quant_llm-int8_active": true,
19
+ "quant_quanto_active": false,
20
+ "quant_torch_dynamic_active": false,
21
+ "quant_torch_static_active": false,
22
+ "quant_llm-int8_compute_dtype": "bfloat16",
23
+ "quant_llm-int8_double_quant": false,
24
+ "quant_llm-int8_enable_fp32_cpu_offload": false,
25
+ "quant_llm-int8_has_fp16_weight": false,
26
+ "quant_llm-int8_quant_type": "fp4",
27
+ "quant_llm-int8_threshold": 6.0,
28
+ "quant_llm-int8_weight_bits": 8,
29
+ "max_batch_size": 1,
30
+ "device": "cuda",
31
+ "cache_dir": "/covalent/.cache/models/tmp3kfv_gz9",
32
+ "task": "",
33
+ "save_load_fn": "bitsandbytes",
34
+ "save_load_fn_args": {}
35
+ }