Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Punctuator for Simplified Chinese
|
2 |
+
|
3 |
+
The model is fine-tuned based on `DistilBertForTokenClassification` for adding punctuations to plain text (simplified Chinese). The model is fine-tuned based on distilled model `bert-base-chinese`.
|
4 |
+
|
5 |
+
## Usage
|
6 |
+
|
7 |
+
```python
|
8 |
+
from transformers import DistilBertForTokenClassification, DistilBertTokenizerFast
|
9 |
+
|
10 |
+
model = DistilBertForTokenClassification.from_pretrained("Qishuai/distilbert_punctuator_zh")
|
11 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("Qishuai/distilbert_punctuator_zh")
|
12 |
+
```
|
13 |
+
|
14 |
+
## Model Overview
|
15 |
+
|
16 |
+
### Training data
|
17 |
+
Combination of following three dataset:
|
18 |
+
|
19 |
+
- News articles of People's Daily 2014. [Reference](https://github.com/InsaneLife/ChineseNLPCorpus)
|
20 |
+
|
21 |
+
### Model Performance
|
22 |
+
- Validation with MSRA training dataset. [Reference](https://github.com/InsaneLife/ChineseNLPCorpus/tree/master/NER/MSRA)
|
23 |
+
- Metrics Report:
|
24 |
+
| | precision | recall | f1-score | support |
|
25 |
+
|:----------------:|:---------:|:------:|:--------:|:-------:|
|
26 |
+
| C_COMMA | 0.67 | 0.59 | 0.63 | 91566 |
|
27 |
+
| C_DUNHAO | 0.50 | 0.37 | 0.42 | 21013 |
|
28 |
+
| C_EXLAMATIONMARK | 0.23 | 0.06 | 0.09 | 399 |
|
29 |
+
| C_PERIOD | 0.84 | 0.99 | 0.91 | 44258 |
|
30 |
+
| C_QUESTIONMARK | 0.00 | 1.00 | 0.00 | 0 |
|
31 |
+
| micro avg | 0.71 | 0.67 | 0.69 | 157236 |
|
32 |
+
| macro avg | 0.45 | 0.60 | 0.41 | 157236 |
|
33 |
+
| weighted avg | 0.69 | 0.67 | 0.68 | 157236 |
|
34 |
+
|
35 |
+
|