munish0838 commited on
Commit
0d8fe33
·
verified ·
1 Parent(s): e136ecb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +319 -0
README.md ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Hermes-2-Theta-Llama-3-8B
3
+ tags:
4
+ - Llama-3
5
+ - instruct
6
+ - finetune
7
+ - chatml
8
+ - DPO
9
+ - RLHF
10
+ - gpt4
11
+ - synthetic data
12
+ - distillation
13
+ - function calling
14
+ - json mode
15
+ - axolotl
16
+ - merges
17
+ model-index:
18
+ - name: Hermes-2-Pro-Llama-3-Instruct-8B-Merge
19
+ results: []
20
+ language:
21
+ - en
22
+ datasets:
23
+ - teknium/OpenHermes-2.5
24
+ widget:
25
+ - example_title: Hermes 2 Pro Llama-3 Instruct Merge
26
+ messages:
27
+ - role: system
28
+ content: >-
29
+ You are a sentient, superintelligent artificial general intelligence, here
30
+ to teach and assist me.
31
+ - role: user
32
+ content: >-
33
+ Write a short story about Goku discovering kirby has teamed up with Majin
34
+ Buu to destroy the world.
35
+ license: apache-2.0
36
+ ---
37
+ # - Hermes-2 Θ Llama-3 8B-GGUF
38
+ - This is quantized version of [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) created using llama.cpp
39
+
40
+
41
+ ## Model Description
42
+
43
+ Hermes-2 Θ (Theta) is the first experimental merged model released by [Nous Research](https://nousresearch.com/), in collaboration with Charles Goddard at [Arcee](https://www.arcee.ai/), the team behind MergeKit.
44
+
45
+ Hermes-2 Θ is a merged and then further RLHF'ed version our excellent Hermes 2 Pro model and Meta's Llama-3 Instruct model to form a new model, Hermes-2 Θ, combining the best of both worlds of each model.
46
+
47
+ ## Example Outputs
48
+
49
+ ### Create New Mythos:
50
+
51
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/dvKhnSvHdx4nTQIqB9Lpv.png)
52
+
53
+ ### Chat with a Meta-Cognitive Entity
54
+
55
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/GwdCqowE6GQylineqehhx.png)
56
+
57
+ ### Ask for a structured JSON output:
58
+
59
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/us72aL9gwUXdqSHetRVRV.png)
60
+
61
+
62
+ # Prompt Format
63
+
64
+ Hermes 2 Θ uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
65
+
66
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
67
+
68
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
69
+
70
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
71
+
72
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
73
+ ```
74
+ <|im_start|>system
75
+ You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
76
+ <|im_start|>user
77
+ Hello, who are you?<|im_end|>
78
+ <|im_start|>assistant
79
+ Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
80
+ ```
81
+
82
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
83
+ `tokenizer.apply_chat_template()` method:
84
+
85
+ ```python
86
+ messages = [
87
+ {"role": "system", "content": "You are Hermes 2."},
88
+ {"role": "user", "content": "Hello, who are you?"}
89
+ ]
90
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
91
+ model.generate(**gen_input)
92
+ ```
93
+
94
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
95
+ that the model continues with an assistant response.
96
+
97
+ To utilize the prompt format without a system prompt, simply leave the line out.
98
+
99
+ ## Prompt Format for Function Calling
100
+
101
+ Our model was trained on specific system prompts and structures for Function Calling. While the system prompt looks complicated, we have created a GitHub repo containing code to easily build these based on real python functions.
102
+
103
+ You should use the system role with this message, followed by a function signature json as this example shows here.
104
+ ```
105
+ <|im_start|>system
106
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
107
+ <tool_call>
108
+ {"arguments": <args-dict>, "name": <function-name>}
109
+ </tool_call><|im_end|>
110
+ ```
111
+
112
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
113
+ ```
114
+ <|im_start|>user
115
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
116
+ ```
117
+
118
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
119
+ ```
120
+ <|im_start|>assistant
121
+ <tool_call>
122
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
123
+ </tool_call><|im_end|>
124
+ ```
125
+
126
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
127
+ ```
128
+ <|im_start|>tool
129
+ <tool_response>
130
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
131
+ </tool_response>
132
+ <|im_end|>
133
+ ```
134
+
135
+ The assistant will then read in that data from the function's response, and generate a natural language response:
136
+ ```
137
+ <|im_start|>assistant
138
+ The stock fundamentals data for Tesla (TSLA) are as follows:
139
+ - **Symbol**: TSLA
140
+ - **Company Name**: Tesla, Inc.
141
+ - **Sector**: Consumer Cyclical
142
+ - **Industry**: Auto Manufacturers
143
+ - **Market Capitalization**: $566,160,130,480
144
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
145
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
146
+ - **Dividend Yield**: N/A
147
+ - **Trailing Earnings Per Share (EPS)**: $4.3
148
+ - **Beta Value of the Stock**: 2.42
149
+ - **52-Week High Price of the Stock**: $299.29
150
+ - **52-Week Low Price of the Stock**: $152.37
151
+
152
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
153
+ ```
154
+
155
+ ## Prompt Format for JSON Mode / Structured Outputs
156
+
157
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
158
+
159
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
160
+
161
+ ```
162
+ <|im_start|>system
163
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
164
+ ```
165
+
166
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
167
+
168
+
169
+ # Benchmarks
170
+
171
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/suBbCUIxpcRvhCv6-DBDQ.png)
172
+
173
+ ## GPT4All:
174
+ ```
175
+
176
+ |    Task     |Version| Metric |Value |   |Stderr|
177
+
178
+ |-------------|------:|--------|-----:|---|-----:|
179
+
180
+ |arc_challenge|      0|acc     |0.5529|±  |0.0145|
181
+
182
+ |             |       |acc_norm|0.5870|±  |0.0144|
183
+
184
+ |arc_easy     |      0|acc     |0.8371|±  |0.0076|
185
+
186
+ |             |       |acc_norm|0.8144|±  |0.0080|
187
+
188
+ |boolq        |      1|acc     |0.8599|±  |0.0061|
189
+
190
+ |hellaswag    |      0|acc     |0.6133|±  |0.0049|
191
+
192
+ |             |       |acc_norm|0.7989|±  |0.0040|
193
+
194
+ |openbookqa   |      0|acc     |0.3940|±  |0.0219|
195
+
196
+ |             |       |acc_norm|0.4680|±  |0.0223|
197
+
198
+ |piqa         |      0|acc     |0.8063|±  |0.0092|
199
+
200
+ |             |       |acc_norm|0.8156|±  |0.0090|
201
+
202
+ |winogrande   |      0|acc     |0.7372|±  |0.0124|
203
+
204
+ ```
205
+
206
+ Average: 72.59
207
+
208
+ ## AGIEval:
209
+ ```
210
+ |             Task             |Version| Metric |Value |   |Stderr|
211
+ |------------------------------|------:|--------|-----:|---|-----:|
212
+ |agieval_aqua_rat              |      0|acc     |0.2441|±  |0.0270|
213
+ |                              |       |acc_norm|0.2441|±  |0.0270|
214
+ |agieval_logiqa_en             |      0|acc     |0.3687|±  |0.0189|
215
+ |                              |       |acc_norm|0.3840|±  |0.0191|
216
+ |agieval_lsat_ar               |      0|acc     |0.2304|±  |0.0278|
217
+ |                              |       |acc_norm|0.2174|±  |0.0273|
218
+ |agieval_lsat_lr               |      0|acc     |0.5471|±  |0.0221|
219
+ |                              |       |acc_norm|0.5373|±  |0.0221|
220
+ |agieval_lsat_rc               |      0|acc     |0.6617|±  |0.0289|
221
+ |                              |       |acc_norm|0.6357|±  |0.0294|
222
+ |agieval_sat_en                |      0|acc     |0.7670|±  |0.0295|
223
+ |                              |       |acc_norm|0.7379|±  |0.0307|
224
+ |agieval_sat_en_without_passage|      0|acc     |0.4417|±  |0.0347|
225
+ |                              |       |acc_norm|0.4223|±  |0.0345|
226
+ |agieval_sat_math              |      0|acc     |0.4000|±  |0.0331|
227
+ |                              |       |acc_norm|0.3455|±  |0.0321|
228
+ ```
229
+
230
+ Average: 44.05
231
+
232
+ ## BigBench:
233
+
234
+ ```
235
+
236
+ |                      Task                      |Version|       Metric        |Value |   |Stderr|
237
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
238
+ |bigbench_causal_judgement                       |      0|multiple_choice_grade|0.6000|±  |0.0356|
239
+ |bigbench_date_understanding                     |      0|multiple_choice_grade|0.6585|±  |0.0247|
240
+ |bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.3178|±  |0.0290|
241
+ |bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.2340|±  |0.0224|
242
+ |                                                |       |exact_str_match      |0.0000|±  |0.0000|
243
+ |bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.2980|±  |0.0205|
244
+ |bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.2057|±  |0.0153|
245
+ |bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.5367|±  |0.0288|
246
+ |bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.4040|±  |0.0220|
247
+ |bigbench_navigate                               |      0|multiple_choice_grade|0.4970|±  |0.0158|
248
+ |bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.7075|±  |0.0102|
249
+ |bigbench_ruin_names                             |      0|multiple_choice_grade|0.4821|±  |0.0236|
250
+ |bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.2295|±  |0.0133|
251
+ |bigbench_snarks                                 |      0|multiple_choice_grade|0.6906|±  |0.0345|
252
+ |bigbench_sports_understanding                   |      0|multiple_choice_grade|0.5375|±  |0.0159|
253
+ |bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.6270|±  |0.0153|
254
+ |bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2216|±  |0.0118|
255
+ |bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1594|±  |0.0088|
256
+ |bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.5367|±  |0.0288|
257
+ ```
258
+
259
+ Average: 44.13
260
+
261
+ **IFEval**: 72.64
262
+
263
+ **MT_Bench**: Turn 1 - 8.3875, Turn 2 - 8.00625, Average - 8.196875
264
+
265
+ # Inference Code
266
+
267
+ Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
268
+
269
+ Note: To use function calling, you should see the github repo above.
270
+
271
+ ```python
272
+ # Code to inference Hermes with HF Transformers
273
+ # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
274
+
275
+ import torch
276
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
277
+ import bitsandbytes, flash_attn
278
+
279
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Theta-Llama-3-8B', trust_remote_code=True)
280
+ model = LlamaForCausalLM.from_pretrained(
281
+ "NousResearch/Hermes-2-Theta-Llama-3-8B",
282
+ torch_dtype=torch.float16,
283
+ device_map="auto",
284
+ load_in_8bit=False,
285
+ load_in_4bit=True,
286
+ use_flash_attention_2=True
287
+ )
288
+
289
+ prompts = [
290
+ """<|im_start|>system
291
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
292
+ <|im_start|>user
293
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
294
+ <|im_start|>assistant""",
295
+ ]
296
+
297
+ for chat in prompts:
298
+ print(chat)
299
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
300
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
301
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
302
+ print(f"Response: {response}")
303
+ ```
304
+
305
+
306
+ ## Inference Code for Function Calling:
307
+
308
+ All code for utilizing, parsing, and building function calling templates is available on our github:
309
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
310
+
311
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
312
+
313
+ # Chat Interfaces
314
+
315
+ When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
316
+ In LM-Studio, simply select the ChatML Prefix on the settings side pane:
317
+
318
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
319
+