GGUF
medical
Inference Endpoints
conversational
aashish1904 commited on
Commit
7c6ea85
·
verified ·
1 Parent(s): df508e8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: llama3
5
+ datasets:
6
+ - Henrychur/MMedC
7
+ language:
8
+ - en
9
+ - zh
10
+ - ja
11
+ - fr
12
+ - ru
13
+ - es
14
+ tags:
15
+ - medical
16
+
17
+ ---
18
+
19
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
20
+
21
+
22
+ # QuantFactory/MMed-Llama-3-8B-GGUF
23
+ This is quantized version of [Henrychur/MMed-Llama-3-8B](https://huggingface.co/Henrychur/MMed-Llama-3-8B) created using llama.cpp
24
+
25
+ # Original Model Card
26
+
27
+ # MMedLM
28
+ [💻Github Repo](https://github.com/MAGIC-AI4Med/MMedLM) [🖨️arXiv Paper](https://arxiv.org/abs/2402.13963)
29
+
30
+ The official model weights for "Towards Building Multilingual Language Model for Medicine".
31
+
32
+
33
+ ## Introduction
34
+ This repo contains MMed-Llama 3, a multilingual medical foundation model with 8 billion parameters. MMed-Llama 3 builds upon the foundation of Llama 3 and has been further pretrained on MMedC, a comprehensive multilingual medical corpus. This further pretraining enhances the model's medical-domain knowledge.
35
+
36
+ The model underwent further pretraining on MMedC with the following hyperparameters:
37
+ - Iterations: 15000
38
+ - Global batch size: 512
39
+ - Cutoff length: 8192
40
+ - Learning rate: 2e-5
41
+
42
+ The model can be loaded as follows:
43
+ ```py
44
+ import torch
45
+ from transformers import AutoTokenizer, AutoModelForCausalLM
46
+ tokenizer = AutoTokenizer.from_pretrained("Henrychur/MMed-Llama-3-8B")
47
+ model = AutoModelForCausalLM.from_pretrained("Henrychur/MMed-Llama-3-8B", torch_dtype=torch.float16)
48
+ ```
49
+
50
+ - Note that this is a foundation model that has not undergone instruction fine-tuning.
51
+ ## News
52
+ [2024.2.21] Our pre-print paper is released ArXiv. Dive into our findings [here](https://arxiv.org/abs/2402.13963).
53
+
54
+ [2024.2.20] We release [MMedLM](https://huggingface.co/Henrychur/MMedLM) and [MMedLM 2](https://huggingface.co/Henrychur/MMedLM2). With an auto-regressive continues training on MMedC, these models achieves superior performance compared to all other open-source models, even rivaling GPT-4 on MMedBench.
55
+
56
+ [2023.2.20] We release [MMedC](https://huggingface.co/datasets/Henrychur/MMedC), a multilingual medical corpus containing 25.5B tokens.
57
+
58
+ [2023.2.20] We release [MMedBench](https://huggingface.co/datasets/Henrychur/MMedBench), a new multilingual medical multi-choice question-answering
59
+ benchmark with rationale. Check out the leaderboard [here](https://henrychur.github.io/MultilingualMedQA/).
60
+
61
+ ## Evaluation on MMedBench
62
+ The further pretrained MMedLM 2 showcast it's great performance in medical domain across different language.
63
+
64
+ | Method | Size | Year | MMedC | MMedBench | English | Chinese | Japanese | French | Russian | Spanish | Avg. |
65
+ |------------------|------|---------|-----------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
66
+ | GPT-3.5 | - | 2022.12 | ✗ | ✗ | 56.88 | 52.29 | 34.63 | 32.48 | 66.36 | 66.06 | 51.47 |
67
+ | GPT-4 | - | 2023.3 | ✗ | ✗ | 78.00 | 75.07 | 72.91 | 56.59 | 83.62 | 85.67 | 74.27 |
68
+ | Gemini-1.0 pro | - | 2024.1 | ✗ | ✗ | 53.73 | 60.19 | 44.22 | 29.90 | 73.44 | 69.69 | 55.20 |
69
+ | BLOOMZ | 7B | 2023.5 | ✗ | trainset | 43.28 | 58.06 | 32.66 | 26.37 | 62.89 | 47.34 | 45.10 |
70
+ | InternLM | 7B | 2023.7 | ✗ | trainset | 44.07 | 64.62 | 37.19 | 24.92 | 58.20 | 44.97 | 45.67 |
71
+ | Llama 2 | 7B | 2023.7 | ✗ | trainset | 43.36 | 50.29 | 25.13 | 20.90 | 66.80 | 47.10 | 42.26 |
72
+ | MedAlpaca | 7B | 2023.3 | ✗ | trainset | 46.74 | 44.80 | 29.64 | 21.06 | 59.38 | 45.00 | 41.11 |
73
+ | ChatDoctor | 7B | 2023.4 | ✗ | trainset | 43.52 | 43.26 | 25.63 | 18.81 | 62.50 | 43.44 | 39.53 |
74
+ | PMC-LLaMA | 7B | 2023.4 | ✗ | trainset | 47.53 | 42.44 | 24.12 | 20.74 | 62.11 | 43.29 | 40.04 |
75
+ | Mistral | 7B | 2023.10 | ✗ | trainset | 61.74 | 71.10 | 44.72 | 48.71 | 74.22 | 63.86 | 60.73 |
76
+ | InternLM 2 | 7B | 2024.2 | ✗ | trainset | 57.27 | 77.55 | 47.74 | 41.00 | 68.36 | 59.59 | 58.59 |
77
+ | MMedLM(Ours) | 7B | - | ✓ | trainset | 49.88 | 70.49 | 46.23 | 36.66 | 72.27 | 54.52 | 55.01 |
78
+ | MMedLM 2(Ours) | 7B | - | ✓ | trainset | 61.74 | 80.01 | 61.81 | 52.09 | 80.47 | 67.65 | 67.30 |
79
+ |MMed-Llama 3(Ours)|8B |- | ✓ | trainset | 66.06| 79.25 | 61.81 | 55.63 | 75.39 | 68.38 | 67.75 |
80
+ - GPT and Gemini is evluated under zero-shot setting through API
81
+ - Open-source models first undergo training on the trainset of MMedBench before evaluate.
82
+
83
+ ## Contact
84
+ If you have any question, please feel free to contact [email protected].
85
+
86
+ ## Citation
87
+ ```
88
+ @misc{qiu2024building,
89
+ title={Towards Building Multilingual Language Model for Medicine},
90
+ author={Pengcheng Qiu and Chaoyi Wu and Xiaoman Zhang and Weixiong Lin and Haicheng Wang and Ya Zhang and Yanfeng Wang and Weidi Xie},
91
+ year={2024},
92
+ eprint={2402.13963},
93
+ archivePrefix={arXiv},
94
+ primaryClass={cs.CL}
95
+ }
96
+ ```