Text Generation
GGUF
code
Inference Endpoints
conversational
munish0838 commited on
Commit
86f651f
·
verified ·
1 Parent(s): 8b68705

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license_name: tongyi-qianwen-research
3
+ license_link: https://huggingface.co/Qwen/CodeQwen1.5-7B/blob/main/LICENSE
4
+ tags:
5
+ - code
6
+ pipeline_tag: text-generation
7
+ license: other
8
+ base_model: NTQAI/Nxcode-CQ-7B-orpo
9
+ ---
10
+
11
+ # QuantFactory/Nxcode-CQ-7B-orpo-GGUF
12
+ This is quantized version of [NTQAI/Nxcode-CQ-7B-orpo](https://huggingface.co/NTQAI/Nxcode-CQ-7B-orpo) created suing llama.cpp
13
+
14
+ ## Model Description
15
+
16
+ Nxcode-CQ-7B-orpo is an [Monolithic Preference Optimization without Reference Model](https://arxiv.org/abs/2403.07691) fine-tune of Qwen/CodeQwen1.5-7B on 100k samples of high-quality ranking data.
17
+
18
+ ## [Evalplus](https://github.com/evalplus/evalplus)
19
+
20
+ | EvalPlus | pass@1 |
21
+ | --- | --- |
22
+ | HumanEval | 86.6 |
23
+ | HumanEval+ | 83.5 |
24
+ | MBPP(v0.2.0) | 82.3 |
25
+ | MBPP+(v0.2.0) | 70.4 |
26
+
27
+ We use a simple template to generate the solution for evalplus:
28
+
29
+ ```python
30
+ "Complete the following Python function:\n{prompt}"
31
+ ```
32
+
33
+ [Evalplus Leaderboard](https://evalplus.github.io/leaderboard.html)
34
+ | Models | HumanEval | HumanEval+|
35
+ |------ | ------ | ------ |
36
+ | GPT-4-Turbo (April 2024)| 90.2| 86.6|
37
+ | GPT-4 (May 2023)| 88.4| 81.17|
38
+ | GPT-4-Turbo (Nov 2023)| 85.4| 79.3|
39
+ | CodeQwen1.5-7B-Chat| 83.5| 78.7|
40
+ | claude-3-opus (Mar 2024)| 82.9| 76.8|
41
+ | DeepSeek-Coder-33B-instruct| 81.1| 75.0|
42
+ | WizardCoder-33B-V1.1| 79.9| 73.2|
43
+ | OpenCodeInterpreter-DS-33B| 79.3| 73.8|
44
+ | speechless-codellama-34B-v2.0| 77.4| 72|
45
+ | GPT-3.5-Turbo (Nov 2023)| 76.8| 70.7|
46
+ | Llama3-70B-instruct| 76.2| 70.7|
47
+
48
+ ## Bigcode Leaderboard
49
+
50
+ [Bigcode Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)
51
+
52
+ **09/05/2024**
53
+
54
+ Top 1 average score.
55
+
56
+ Top 2 winrate.
57
+
58
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5ee1b417636bdb3834e2da19/OQonD6a7aNjnN9SsTkFp-.png)
59
+
60
+
61
+ ## Quickstart
62
+
63
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. You should upgrade the transformers if you receive an error when loading the tokenizer
64
+ ```python
65
+ from transformers import AutoModelForCausalLM, AutoTokenizer
66
+ device = "cuda" # the device to load the model onto
67
+
68
+ model = AutoModelForCausalLM.from_pretrained(
69
+ "NTQAI/Nxcode-CQ-7B-orpo",
70
+ torch_dtype="auto",
71
+ device_map="auto"
72
+ )
73
+ tokenizer = AutoTokenizer.from_pretrained("NTQAI/Nxcode-CQ-7B-orpo")
74
+
75
+ prompt = """Complete the following Python function:
76
+ from typing import List
77
+
78
+
79
+ def has_close_elements(numbers: List[float], threshold: float) -> bool:
80
+ """ Check if in given list of numbers, are any two numbers closer to each other than
81
+ given threshold.
82
+ >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
83
+ False
84
+ >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
85
+ True
86
+ """
87
+ """
88
+ messages = [
89
+ {"role": "user", "content": prompt}
90
+ ]
91
+
92
+ inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
93
+ outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
94
+ res = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
95
+
96
+ ```