GGUF
English
Inference Endpoints
conversational
aashish1904 commited on
Commit
39c7680
·
verified ·
1 Parent(s): 8d72e09

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: apache-2.0
5
+ datasets:
6
+ - cerebras/SlimPajama-627B
7
+ - bigcode/starcoderdata
8
+ - OpenAssistant/oasst_top1_2023-08-25
9
+ language:
10
+ - en
11
+
12
+ ---
13
+
14
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
15
+
16
+
17
+ # QuantFactory/TinyLlama-1.1B-Chat-v0.6-GGUF
18
+ This is quantized version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) created using llama.cpp
19
+
20
+ # Original Model Card
21
+
22
+ <div align="center">
23
+
24
+ # TinyLlama-1.1B
25
+ </div>
26
+
27
+ https://github.com/jzhang38/TinyLlama
28
+
29
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
30
+
31
+
32
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
33
+
34
+ #### This Model
35
+ This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-955k-2T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
36
+ We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
37
+
38
+
39
+ #### How to use
40
+ You will need the transformers>=4.34
41
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
42
+
43
+ ```python
44
+ # Install transformers from source - only needed for versions <= v4.34
45
+ # pip install git+https://github.com/huggingface/transformers.git
46
+ # pip install accelerate
47
+
48
+ import torch
49
+ from transformers import pipeline
50
+
51
+ pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v0.6", torch_dtype=torch.bfloat16, device_map="auto")
52
+
53
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
54
+ messages = [
55
+ {
56
+ "role": "system",
57
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
58
+ },
59
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
60
+ ]
61
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
62
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
63
+ print(outputs[0]["generated_text"])
64
+ # <|system|>
65
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
66
+ # <|user|>
67
+ # How many helicopters can a human eat in one sitting?</s>
68
+ # <|assistant|>
69
+ # ...
70
+ ```