aashish1904 commited on
Commit
068e7ec
·
verified ·
1 Parent(s): 6195f28

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +171 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ library_name: transformers
5
+ license: gemma
6
+ base_model: jeiku/Dante_9B
7
+ tags:
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: outputs/out
11
+ results: []
12
+
13
+ ---
14
+
15
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
16
+
17
+
18
+ # QuantFactory/Virgil_9B-GGUF
19
+ This is quantized version of [FourOhFour/Virgil_9B](https://huggingface.co/FourOhFour/Virgil_9B) created using llama.cpp
20
+
21
+ # Original Model Card
22
+
23
+
24
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
+ should probably proofread and complete it, then remove this comment. -->
26
+
27
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
28
+ <details><summary>See axolotl config</summary>
29
+
30
+ axolotl version: `0.4.1`
31
+ ```yaml
32
+ base_model: jeiku/Dante_9B
33
+ model_type: AutoModelForCausalLM
34
+ tokenizer_type: AutoTokenizer
35
+
36
+ load_in_8bit: false
37
+ load_in_4bit: false
38
+ strict: false
39
+
40
+ datasets:
41
+ - path: FourOhFour/RP_Phase
42
+ type: sharegpt
43
+ conversation: chatml
44
+
45
+ chat_template: chatml
46
+
47
+ val_set_size: 0.0025
48
+ output_dir: ./outputs/out
49
+
50
+ adapter:
51
+ lora_r:
52
+ lora_alpha:
53
+ lora_dropout:
54
+ lora_target_linear:
55
+
56
+ sequence_len: 8192
57
+ sample_packing: true
58
+ eval_sample_packing: false
59
+ pad_to_sequence_len: true
60
+
61
+ plugins:
62
+ - axolotl.integrations.liger.LigerPlugin
63
+ liger_rope: true
64
+ liger_rms_norm: false
65
+ liger_swiglu: true
66
+ liger_fused_linear_cross_entropy: false
67
+
68
+ wandb_project: chatml9B
69
+ wandb_entity:
70
+ wandb_watch:
71
+ wandb_name: chatml9B
72
+ wandb_log_model:
73
+
74
+ gradient_accumulation_steps: 32
75
+ micro_batch_size: 1
76
+ num_epochs: 2
77
+ optimizer: adamw_bnb_8bit
78
+ lr_scheduler: cosine
79
+ learning_rate: 0.000008
80
+ weight_decay: 0.05
81
+
82
+ train_on_inputs: false
83
+ group_by_length: false
84
+ bf16: auto
85
+ fp16:
86
+ tf32: true
87
+
88
+ gradient_checkpointing: true
89
+ early_stopping_patience:
90
+ resume_from_checkpoint:
91
+ local_rank:
92
+ logging_steps: 1
93
+ xformers_attention:
94
+ flash_attention: true
95
+
96
+ warmup_ratio: 0.1
97
+ evals_per_epoch: 4
98
+ eval_table_size:
99
+ eval_max_new_tokens: 128
100
+ saves_per_epoch: 2
101
+
102
+ debug:
103
+ deepspeed: deepspeed_configs/zero3_bf16.json
104
+ fsdp:
105
+ fsdp_config:
106
+
107
+ special_tokens:
108
+ pad_token: <pad>
109
+
110
+ ```
111
+
112
+ </details><br>
113
+
114
+ # outputs/out
115
+
116
+ This model is a fine-tuned version of [jeiku/Dante_9B](https://huggingface.co/jeiku/Dante_9B) on the None dataset.
117
+ It achieves the following results on the evaluation set:
118
+ - Loss: 0.7075
119
+
120
+ ## Model description
121
+
122
+ More information needed
123
+
124
+ ## Intended uses & limitations
125
+
126
+ More information needed
127
+
128
+ ## Training and evaluation data
129
+
130
+ More information needed
131
+
132
+ ## Training procedure
133
+
134
+ ### Training hyperparameters
135
+
136
+ The following hyperparameters were used during training:
137
+ - learning_rate: 8e-06
138
+ - train_batch_size: 1
139
+ - eval_batch_size: 1
140
+ - seed: 42
141
+ - distributed_type: multi-GPU
142
+ - num_devices: 4
143
+ - gradient_accumulation_steps: 32
144
+ - total_train_batch_size: 128
145
+ - total_eval_batch_size: 4
146
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
147
+ - lr_scheduler_type: cosine
148
+ - lr_scheduler_warmup_steps: 14
149
+ - num_epochs: 2
150
+
151
+ ### Training results
152
+
153
+ | Training Loss | Epoch | Step | Validation Loss |
154
+ |:-------------:|:------:|:----:|:---------------:|
155
+ | 1.7474 | 0.0135 | 1 | 1.7996 |
156
+ | 1.6968 | 0.2570 | 19 | 0.9551 |
157
+ | 1.6583 | 0.5139 | 38 | 0.8805 |
158
+ | 1.5418 | 0.7709 | 57 | 0.7926 |
159
+ | 1.3997 | 1.0271 | 76 | 0.7500 |
160
+ | 1.3921 | 1.2847 | 95 | 0.7168 |
161
+ | 1.4141 | 1.5424 | 114 | 0.7155 |
162
+ | 1.4139 | 1.8 | 133 | 0.7075 |
163
+
164
+
165
+ ### Framework versions
166
+
167
+ - Transformers 4.46.0.dev0
168
+ - Pytorch 2.4.0+cu121
169
+ - Datasets 2.21.0
170
+ - Tokenizers 0.20.0
171
+