File size: 9,624 Bytes
1b5c61b bd694be 1b5c61b bd694be 1b5c61b f8f33b8 ca5c209 f8f33b8 12354c2 1af63c6 f8f33b8 890c8dc f8f33b8 12354c2 7b5d46f 12354c2 7c7b419 12354c2 54e5483 12354c2 54e5483 12354c2 54e5483 12354c2 54e5483 12354c2 f346172 12354c2 54e5483 12354c2 30765d9 afaaf53 30765d9 f8f33b8 bd694be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
---
language:
- en
license: other
tags:
- chat
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: Qwen2-72B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 79.89
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-72B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 57.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-72B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 35.12
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-72B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 16.33
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-72B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17.17
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-72B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.92
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Qwen/Qwen2-72B-Instruct
name: Open LLM Leaderboard
---
# Qwen2-72B-Instruct
## Introduction
Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 72B Qwen2 model.
Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.
Qwen2-72B-Instruct supports a context length of up to 131,072 tokens, enabling the processing of extensive inputs. Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2/), [GitHub](https://github.com/QwenLM/Qwen2), and [Documentation](https://qwen.readthedocs.io/en/latest/).
<br>
## Model Details
Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
## Training details
We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.
## Requirements
The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-72B-Instruct",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-72B-Instruct")
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
1. **Install vLLM**: You can install vLLM by running the following command.
```bash
pip install "vllm>=0.4.3"
```
Or you can install vLLM from [source](https://github.com/vllm-project/vllm/).
2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
```json
{
"architectures": [
"Qwen2ForCausalLM"
],
// ...
"vocab_size": 152064,
// adding the following snippets
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
This snippet enable YARN to support longer contexts.
3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
```bash
python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-72B-Instruct --model path/to/weights
```
Then you can access the Chat API by:
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen2-72B-Instruct",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Your Long Input Here."}
]
}'
```
For further usage instructions of vLLM, please refer to our [Github](https://github.com/QwenLM/Qwen2).
**Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation
We briefly compare Qwen2-72B-Instruct with similar-sized instruction-tuned LLMs, including our previous Qwen1.5-72B-Chat. The results are shown as follows:
| Datasets | Llama-3-70B-Instruct | Qwen1.5-72B-Chat | **Qwen2-72B-Instruct** |
| :--- | :---: | :---: | :---: |
| _**English**_ | | | |
| MMLU | 82.0 | 75.6 | **82.3** |
| MMLU-Pro | 56.2 | 51.7 | **64.4** |
| GPQA | 41.9 | 39.4 | **42.4** |
| TheroemQA | 42.5 | 28.8 | **44.4** |
| MT-Bench | 8.95 | 8.61 | **9.12** |
| Arena-Hard | 41.1 | 36.1 | **48.1** |
| IFEval (Prompt Strict-Acc.) | 77.3 | 55.8 | **77.6** |
| _**Coding**_ | | | |
| HumanEval | 81.7 | 71.3 | **86.0** |
| MBPP | **82.3** | 71.9 | 80.2 |
| MultiPL-E | 63.4 | 48.1 | **69.2** |
| EvalPlus | 75.2 | 66.9 | **79.0** |
| LiveCodeBench | 29.3 | 17.9 | **35.7** |
| _**Mathematics**_ | | | |
| GSM8K | **93.0** | 82.7 | 91.1 |
| MATH | 50.4 | 42.5 | **59.7** |
| _**Chinese**_ | | | |
| C-Eval | 61.6 | 76.1 | **83.8** |
| AlignBench | 7.42 | 7.28 | **8.27** |
## Citation
If you find our work helpful, feel free to give us a cite.
```
@article{qwen2,
title={Qwen2 Technical Report},
year={2024}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Qwen__Qwen2-72B-Instruct)
| Metric |Value|
|-------------------|----:|
|Avg. |43.02|
|IFEval (0-Shot) |79.89|
|BBH (3-Shot) |57.48|
|MATH Lvl 5 (4-Shot)|35.12|
|GPQA (0-shot) |16.33|
|MuSR (0-shot) |17.17|
|MMLU-PRO (5-shot) |48.92|
|