R0sti commited on
Commit
a2a1a5e
·
verified ·
1 Parent(s): 5485560

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7279
21
+ - Answer: {'precision': 0.706858407079646, 'recall': 0.7898640296662547, 'f1': 0.7460595446584939, 'number': 809}
22
+ - Header: {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119}
23
+ - Question: {'precision': 0.7741935483870968, 'recall': 0.8338028169014085, 'f1': 0.8028933092224232, 'number': 1065}
24
+ - Overall Precision: 0.7197
25
+ - Overall Recall: 0.7858
26
+ - Overall F1: 0.7513
27
+ - Overall Accuracy: 0.8034
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7555 | 1.0 | 10 | 1.5320 | {'precision': 0.02317596566523605, 'recall': 0.03337453646477132, 'f1': 0.02735562310030395, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.11706783369803063, 'recall': 0.10046948356807511, 'f1': 0.10813542193026779, 'number': 1065} | 0.0645 | 0.0672 | 0.0658 | 0.3975 |
60
+ | 1.3972 | 2.0 | 20 | 1.1941 | {'precision': 0.2606060606060606, 'recall': 0.2657601977750309, 'f1': 0.2631578947368421, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4398805078416729, 'recall': 0.5530516431924882, 'f1': 0.49001663893510816, 'number': 1065} | 0.3715 | 0.4034 | 0.3868 | 0.6107 |
61
+ | 1.0502 | 3.0 | 30 | 0.9315 | {'precision': 0.5343347639484979, 'recall': 0.61557478368356, 'f1': 0.5720850086157381, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5706304868316041, 'recall': 0.6713615023474179, 'f1': 0.6169111302847283, 'number': 1065} | 0.5484 | 0.6086 | 0.5769 | 0.7259 |
62
+ | 0.8107 | 4.0 | 40 | 0.7975 | {'precision': 0.6146288209606987, 'recall': 0.695920889987639, 'f1': 0.6527536231884058, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6344605475040258, 'recall': 0.739906103286385, 'f1': 0.683138274815778, 'number': 1065} | 0.6124 | 0.6779 | 0.6435 | 0.7593 |
63
+ | 0.6553 | 5.0 | 50 | 0.7487 | {'precision': 0.6507760532150776, 'recall': 0.7255871446229913, 'f1': 0.6861484511981296, 'number': 809} | {'precision': 0.12, 'recall': 0.07563025210084033, 'f1': 0.09278350515463916, 'number': 119} | {'precision': 0.6690085870413739, 'recall': 0.8046948356807512, 'f1': 0.7306052855924979, 'number': 1065} | 0.6435 | 0.7291 | 0.6836 | 0.7719 |
64
+ | 0.5642 | 6.0 | 60 | 0.7147 | {'precision': 0.6557203389830508, 'recall': 0.765142150803461, 'f1': 0.7062179121505989, 'number': 809} | {'precision': 0.20833333333333334, 'recall': 0.12605042016806722, 'f1': 0.15706806282722513, 'number': 119} | {'precision': 0.7058333333333333, 'recall': 0.7953051643192488, 'f1': 0.7479028697571745, 'number': 1065} | 0.6683 | 0.7431 | 0.7037 | 0.7847 |
65
+ | 0.4833 | 7.0 | 70 | 0.6895 | {'precision': 0.6919691969196919, 'recall': 0.7775030902348579, 'f1': 0.7322467986030267, 'number': 809} | {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} | {'precision': 0.7268041237113402, 'recall': 0.7943661971830986, 'f1': 0.7590847913862719, 'number': 1065} | 0.6904 | 0.7531 | 0.7204 | 0.7920 |
66
+ | 0.4356 | 8.0 | 80 | 0.6896 | {'precision': 0.6869109947643979, 'recall': 0.8108776266996292, 'f1': 0.7437641723356009, 'number': 809} | {'precision': 0.27884615384615385, 'recall': 0.24369747899159663, 'f1': 0.2600896860986547, 'number': 119} | {'precision': 0.730185497470489, 'recall': 0.8131455399061033, 'f1': 0.7694358063083073, 'number': 1065} | 0.6909 | 0.7782 | 0.7319 | 0.7919 |
67
+ | 0.3874 | 9.0 | 90 | 0.7000 | {'precision': 0.7158836689038032, 'recall': 0.7911001236093943, 'f1': 0.7516147974163241, 'number': 809} | {'precision': 0.2818181818181818, 'recall': 0.2605042016806723, 'f1': 0.27074235807860264, 'number': 119} | {'precision': 0.7395388556789069, 'recall': 0.8131455399061033, 'f1': 0.7745974955277279, 'number': 1065} | 0.7067 | 0.7712 | 0.7375 | 0.7957 |
68
+ | 0.3771 | 10.0 | 100 | 0.7200 | {'precision': 0.7097142857142857, 'recall': 0.7676143386897404, 'f1': 0.7375296912114014, 'number': 809} | {'precision': 0.272, 'recall': 0.2857142857142857, 'f1': 0.27868852459016397, 'number': 119} | {'precision': 0.7438715131022823, 'recall': 0.8262910798122066, 'f1': 0.7829181494661922, 'number': 1065} | 0.7032 | 0.7702 | 0.7352 | 0.7886 |
69
+ | 0.3231 | 11.0 | 110 | 0.7101 | {'precision': 0.7115177610333692, 'recall': 0.8170580964153276, 'f1': 0.760644418872267, 'number': 809} | {'precision': 0.29133858267716534, 'recall': 0.31092436974789917, 'f1': 0.3008130081300813, 'number': 119} | {'precision': 0.7672188317349607, 'recall': 0.8262910798122066, 'f1': 0.7956600361663653, 'number': 1065} | 0.7163 | 0.7918 | 0.7521 | 0.8000 |
70
+ | 0.3026 | 12.0 | 120 | 0.7186 | {'precision': 0.7138009049773756, 'recall': 0.7799752781211372, 'f1': 0.7454223272297696, 'number': 809} | {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119} | {'precision': 0.7658833768494343, 'recall': 0.8262910798122066, 'f1': 0.7949412827461607, 'number': 1065} | 0.7199 | 0.7777 | 0.7477 | 0.7984 |
71
+ | 0.2876 | 13.0 | 130 | 0.7213 | {'precision': 0.7156862745098039, 'recall': 0.8121137206427689, 'f1': 0.7608569774174871, 'number': 809} | {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119} | {'precision': 0.7737676056338029, 'recall': 0.8253521126760563, 'f1': 0.7987278509768287, 'number': 1065} | 0.7245 | 0.7903 | 0.7559 | 0.8025 |
72
+ | 0.2709 | 14.0 | 140 | 0.7269 | {'precision': 0.7147613762486127, 'recall': 0.796044499381953, 'f1': 0.7532163742690058, 'number': 809} | {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} | {'precision': 0.7709059233449478, 'recall': 0.8309859154929577, 'f1': 0.7998192498870312, 'number': 1065} | 0.7205 | 0.7863 | 0.7519 | 0.8033 |
73
+ | 0.2745 | 15.0 | 150 | 0.7279 | {'precision': 0.706858407079646, 'recall': 0.7898640296662547, 'f1': 0.7460595446584939, 'number': 809} | {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119} | {'precision': 0.7741935483870968, 'recall': 0.8338028169014085, 'f1': 0.8028933092224232, 'number': 1065} | 0.7197 | 0.7858 | 0.7513 | 0.8034 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.42.4
79
+ - Pytorch 2.4.0+cu121
80
+ - Datasets 2.21.0
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1724764274.2ab8e5e967d3.332.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b32fcca476027ef9c22049ad7730d6e783a43d5b82e01cd5f0fabd49a7b03670
3
- size 14941
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01623490d2201155eaf94f421b38b622d4d6d3f429ac7e0a81c34ec03b2d8637
3
+ size 16010
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5160f2ff509bedadd977a31dc2ef5c52439449b31bd5c21d278e05cfd2d42698
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2e3d4db9e66422aea07e5204bf947337cc04ef6e73ea950ded0be8071a8d9f3
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff