RMHalak commited on
Commit
9362fad
·
verified ·
1 Parent(s): 2e1abc3

Task: SequenceClassification

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: facebook/opt-6.7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "facebook/opt-6.7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "score",
19
+ "classifier",
20
+ "score"
21
+ ],
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "k_proj",
28
+ "fc1",
29
+ "v_proj",
30
+ "q_proj",
31
+ "out_proj",
32
+ "fc2"
33
+ ],
34
+ "task_type": "SEQ_CLS",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bde51f7f5ee4c14b8d0f86c53da7a718395f6c5fb8852b97acc18db73a9b762c
3
+ size 37818360
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "</s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "1": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "2": {
14
+ "content": "</s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ }
21
+ },
22
+ "bos_token": "</s>",
23
+ "clean_up_tokenization_spaces": true,
24
+ "eos_token": "</s>",
25
+ "errors": "replace",
26
+ "model_max_length": 1000000000000000019884624838656,
27
+ "pad_token": "</s>",
28
+ "tokenizer_class": "GPT2Tokenizer",
29
+ "unk_token": "</s>"
30
+ }
trainer_state-opt-fp16-QLORA-super_glue-wic-sequence_classification.json ADDED
@@ -0,0 +1,1002 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.6,
5
+ "eval_steps": 1,
6
+ "global_step": 60,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.16,
13
+ "grad_norm": 10.0,
14
+ "learning_rate": 2.5e-05,
15
+ "loss": 0.7248,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.16,
20
+ "eval_accuracy": 0.504,
21
+ "eval_loss": 0.7169140577316284,
22
+ "eval_runtime": 1.7694,
23
+ "eval_samples_per_second": 141.288,
24
+ "eval_steps_per_second": 3.956,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.32,
29
+ "grad_norm": 11.3125,
30
+ "learning_rate": 5e-05,
31
+ "loss": 0.7141,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.32,
36
+ "eval_accuracy": 0.512,
37
+ "eval_loss": 0.713210940361023,
38
+ "eval_runtime": 1.908,
39
+ "eval_samples_per_second": 131.027,
40
+ "eval_steps_per_second": 3.669,
41
+ "step": 2
42
+ },
43
+ {
44
+ "epoch": 0.48,
45
+ "grad_norm": 8.5,
46
+ "learning_rate": 4.913793103448276e-05,
47
+ "loss": 0.72,
48
+ "step": 3
49
+ },
50
+ {
51
+ "epoch": 0.48,
52
+ "eval_accuracy": 0.516,
53
+ "eval_loss": 0.7183730602264404,
54
+ "eval_runtime": 1.9102,
55
+ "eval_samples_per_second": 130.879,
56
+ "eval_steps_per_second": 3.665,
57
+ "step": 3
58
+ },
59
+ {
60
+ "epoch": 0.64,
61
+ "grad_norm": 9.1875,
62
+ "learning_rate": 4.827586206896552e-05,
63
+ "loss": 0.7007,
64
+ "step": 4
65
+ },
66
+ {
67
+ "epoch": 0.64,
68
+ "eval_accuracy": 0.516,
69
+ "eval_loss": 0.7356113195419312,
70
+ "eval_runtime": 1.908,
71
+ "eval_samples_per_second": 131.029,
72
+ "eval_steps_per_second": 3.669,
73
+ "step": 4
74
+ },
75
+ {
76
+ "epoch": 0.8,
77
+ "grad_norm": 9.4375,
78
+ "learning_rate": 4.741379310344828e-05,
79
+ "loss": 0.8173,
80
+ "step": 5
81
+ },
82
+ {
83
+ "epoch": 0.8,
84
+ "eval_accuracy": 0.516,
85
+ "eval_loss": 0.7247294783592224,
86
+ "eval_runtime": 1.9079,
87
+ "eval_samples_per_second": 131.036,
88
+ "eval_steps_per_second": 3.669,
89
+ "step": 5
90
+ },
91
+ {
92
+ "epoch": 0.96,
93
+ "grad_norm": 10.6875,
94
+ "learning_rate": 4.655172413793104e-05,
95
+ "loss": 0.716,
96
+ "step": 6
97
+ },
98
+ {
99
+ "epoch": 0.96,
100
+ "eval_accuracy": 0.52,
101
+ "eval_loss": 0.7145995497703552,
102
+ "eval_runtime": 1.906,
103
+ "eval_samples_per_second": 131.162,
104
+ "eval_steps_per_second": 3.673,
105
+ "step": 6
106
+ },
107
+ {
108
+ "epoch": 1.12,
109
+ "grad_norm": 3.15625,
110
+ "learning_rate": 4.5689655172413794e-05,
111
+ "loss": 0.7381,
112
+ "step": 7
113
+ },
114
+ {
115
+ "epoch": 1.12,
116
+ "eval_accuracy": 0.52,
117
+ "eval_loss": 0.7026171684265137,
118
+ "eval_runtime": 1.9082,
119
+ "eval_samples_per_second": 131.015,
120
+ "eval_steps_per_second": 3.668,
121
+ "step": 7
122
+ },
123
+ {
124
+ "epoch": 1.28,
125
+ "grad_norm": 3.0625,
126
+ "learning_rate": 4.482758620689655e-05,
127
+ "loss": 0.6973,
128
+ "step": 8
129
+ },
130
+ {
131
+ "epoch": 1.28,
132
+ "eval_accuracy": 0.52,
133
+ "eval_loss": 0.6966249942779541,
134
+ "eval_runtime": 1.9071,
135
+ "eval_samples_per_second": 131.086,
136
+ "eval_steps_per_second": 3.67,
137
+ "step": 8
138
+ },
139
+ {
140
+ "epoch": 1.44,
141
+ "grad_norm": 1.2734375,
142
+ "learning_rate": 4.396551724137931e-05,
143
+ "loss": 0.6871,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 1.44,
148
+ "eval_accuracy": 0.516,
149
+ "eval_loss": 0.6961289048194885,
150
+ "eval_runtime": 1.9103,
151
+ "eval_samples_per_second": 130.872,
152
+ "eval_steps_per_second": 3.664,
153
+ "step": 9
154
+ },
155
+ {
156
+ "epoch": 1.6,
157
+ "grad_norm": 4.21875,
158
+ "learning_rate": 4.3103448275862066e-05,
159
+ "loss": 0.6943,
160
+ "step": 10
161
+ },
162
+ {
163
+ "epoch": 1.6,
164
+ "eval_accuracy": 0.508,
165
+ "eval_loss": 0.6979374885559082,
166
+ "eval_runtime": 1.9058,
167
+ "eval_samples_per_second": 131.178,
168
+ "eval_steps_per_second": 3.673,
169
+ "step": 10
170
+ },
171
+ {
172
+ "epoch": 1.76,
173
+ "grad_norm": 1.8671875,
174
+ "learning_rate": 4.224137931034483e-05,
175
+ "loss": 0.7017,
176
+ "step": 11
177
+ },
178
+ {
179
+ "epoch": 1.76,
180
+ "eval_accuracy": 0.508,
181
+ "eval_loss": 0.6969297528266907,
182
+ "eval_runtime": 1.9056,
183
+ "eval_samples_per_second": 131.193,
184
+ "eval_steps_per_second": 3.673,
185
+ "step": 11
186
+ },
187
+ {
188
+ "epoch": 1.92,
189
+ "grad_norm": 6.28125,
190
+ "learning_rate": 4.1379310344827587e-05,
191
+ "loss": 0.6898,
192
+ "step": 12
193
+ },
194
+ {
195
+ "epoch": 1.92,
196
+ "eval_accuracy": 0.512,
197
+ "eval_loss": 0.6961719393730164,
198
+ "eval_runtime": 1.9059,
199
+ "eval_samples_per_second": 131.172,
200
+ "eval_steps_per_second": 3.673,
201
+ "step": 12
202
+ },
203
+ {
204
+ "epoch": 2.08,
205
+ "grad_norm": 2.75,
206
+ "learning_rate": 4.0517241379310344e-05,
207
+ "loss": 0.6945,
208
+ "step": 13
209
+ },
210
+ {
211
+ "epoch": 2.08,
212
+ "eval_accuracy": 0.508,
213
+ "eval_loss": 0.6973124742507935,
214
+ "eval_runtime": 1.9053,
215
+ "eval_samples_per_second": 131.212,
216
+ "eval_steps_per_second": 3.674,
217
+ "step": 13
218
+ },
219
+ {
220
+ "epoch": 2.24,
221
+ "grad_norm": 1.4765625,
222
+ "learning_rate": 3.965517241379311e-05,
223
+ "loss": 0.713,
224
+ "step": 14
225
+ },
226
+ {
227
+ "epoch": 2.24,
228
+ "eval_accuracy": 0.512,
229
+ "eval_loss": 0.6960234642028809,
230
+ "eval_runtime": 1.9114,
231
+ "eval_samples_per_second": 130.792,
232
+ "eval_steps_per_second": 3.662,
233
+ "step": 14
234
+ },
235
+ {
236
+ "epoch": 2.4,
237
+ "grad_norm": 1.1171875,
238
+ "learning_rate": 3.8793103448275865e-05,
239
+ "loss": 0.682,
240
+ "step": 15
241
+ },
242
+ {
243
+ "epoch": 2.4,
244
+ "eval_accuracy": 0.52,
245
+ "eval_loss": 0.6956601738929749,
246
+ "eval_runtime": 1.9077,
247
+ "eval_samples_per_second": 131.049,
248
+ "eval_steps_per_second": 3.669,
249
+ "step": 15
250
+ },
251
+ {
252
+ "epoch": 2.56,
253
+ "grad_norm": 1.2734375,
254
+ "learning_rate": 3.793103448275862e-05,
255
+ "loss": 0.68,
256
+ "step": 16
257
+ },
258
+ {
259
+ "epoch": 2.56,
260
+ "eval_accuracy": 0.52,
261
+ "eval_loss": 0.6956210732460022,
262
+ "eval_runtime": 1.9087,
263
+ "eval_samples_per_second": 130.982,
264
+ "eval_steps_per_second": 3.668,
265
+ "step": 16
266
+ },
267
+ {
268
+ "epoch": 2.7199999999999998,
269
+ "grad_norm": 4.5625,
270
+ "learning_rate": 3.7068965517241385e-05,
271
+ "loss": 0.6793,
272
+ "step": 17
273
+ },
274
+ {
275
+ "epoch": 2.7199999999999998,
276
+ "eval_accuracy": 0.52,
277
+ "eval_loss": 0.6956055164337158,
278
+ "eval_runtime": 1.9077,
279
+ "eval_samples_per_second": 131.05,
280
+ "eval_steps_per_second": 3.669,
281
+ "step": 17
282
+ },
283
+ {
284
+ "epoch": 2.88,
285
+ "grad_norm": 2.15625,
286
+ "learning_rate": 3.620689655172414e-05,
287
+ "loss": 0.6879,
288
+ "step": 18
289
+ },
290
+ {
291
+ "epoch": 2.88,
292
+ "eval_accuracy": 0.52,
293
+ "eval_loss": 0.6959649324417114,
294
+ "eval_runtime": 1.9058,
295
+ "eval_samples_per_second": 131.178,
296
+ "eval_steps_per_second": 3.673,
297
+ "step": 18
298
+ },
299
+ {
300
+ "epoch": 3.04,
301
+ "grad_norm": 2.796875,
302
+ "learning_rate": 3.53448275862069e-05,
303
+ "loss": 0.6963,
304
+ "step": 19
305
+ },
306
+ {
307
+ "epoch": 3.04,
308
+ "eval_accuracy": 0.52,
309
+ "eval_loss": 0.697027325630188,
310
+ "eval_runtime": 1.8566,
311
+ "eval_samples_per_second": 134.654,
312
+ "eval_steps_per_second": 3.77,
313
+ "step": 19
314
+ },
315
+ {
316
+ "epoch": 3.2,
317
+ "grad_norm": 5.3125,
318
+ "learning_rate": 3.4482758620689657e-05,
319
+ "loss": 0.6925,
320
+ "step": 20
321
+ },
322
+ {
323
+ "epoch": 3.2,
324
+ "eval_accuracy": 0.52,
325
+ "eval_loss": 0.6985077857971191,
326
+ "eval_runtime": 1.9069,
327
+ "eval_samples_per_second": 131.1,
328
+ "eval_steps_per_second": 3.671,
329
+ "step": 20
330
+ },
331
+ {
332
+ "epoch": 3.36,
333
+ "grad_norm": 2.984375,
334
+ "learning_rate": 3.3620689655172414e-05,
335
+ "loss": 0.6911,
336
+ "step": 21
337
+ },
338
+ {
339
+ "epoch": 3.36,
340
+ "eval_accuracy": 0.52,
341
+ "eval_loss": 0.699636697769165,
342
+ "eval_runtime": 1.859,
343
+ "eval_samples_per_second": 134.479,
344
+ "eval_steps_per_second": 3.765,
345
+ "step": 21
346
+ },
347
+ {
348
+ "epoch": 3.52,
349
+ "grad_norm": 3.59375,
350
+ "learning_rate": 3.275862068965517e-05,
351
+ "loss": 0.6882,
352
+ "step": 22
353
+ },
354
+ {
355
+ "epoch": 3.52,
356
+ "eval_accuracy": 0.52,
357
+ "eval_loss": 0.7012538909912109,
358
+ "eval_runtime": 1.9094,
359
+ "eval_samples_per_second": 130.928,
360
+ "eval_steps_per_second": 3.666,
361
+ "step": 22
362
+ },
363
+ {
364
+ "epoch": 3.68,
365
+ "grad_norm": 3.875,
366
+ "learning_rate": 3.1896551724137935e-05,
367
+ "loss": 0.7016,
368
+ "step": 23
369
+ },
370
+ {
371
+ "epoch": 3.68,
372
+ "eval_accuracy": 0.52,
373
+ "eval_loss": 0.7007499933242798,
374
+ "eval_runtime": 1.9071,
375
+ "eval_samples_per_second": 131.091,
376
+ "eval_steps_per_second": 3.671,
377
+ "step": 23
378
+ },
379
+ {
380
+ "epoch": 3.84,
381
+ "grad_norm": 5.46875,
382
+ "learning_rate": 3.103448275862069e-05,
383
+ "loss": 0.6972,
384
+ "step": 24
385
+ },
386
+ {
387
+ "epoch": 3.84,
388
+ "eval_accuracy": 0.52,
389
+ "eval_loss": 0.7000390887260437,
390
+ "eval_runtime": 1.9058,
391
+ "eval_samples_per_second": 131.18,
392
+ "eval_steps_per_second": 3.673,
393
+ "step": 24
394
+ },
395
+ {
396
+ "epoch": 4.0,
397
+ "grad_norm": 3.125,
398
+ "learning_rate": 3.017241379310345e-05,
399
+ "loss": 0.7288,
400
+ "step": 25
401
+ },
402
+ {
403
+ "epoch": 4.0,
404
+ "eval_accuracy": 0.52,
405
+ "eval_loss": 0.697628915309906,
406
+ "eval_runtime": 1.9065,
407
+ "eval_samples_per_second": 131.13,
408
+ "eval_steps_per_second": 3.672,
409
+ "step": 25
410
+ },
411
+ {
412
+ "epoch": 4.16,
413
+ "grad_norm": 1.9765625,
414
+ "learning_rate": 2.9310344827586206e-05,
415
+ "loss": 0.7239,
416
+ "step": 26
417
+ },
418
+ {
419
+ "epoch": 4.16,
420
+ "eval_accuracy": 0.52,
421
+ "eval_loss": 0.6958945393562317,
422
+ "eval_runtime": 1.9088,
423
+ "eval_samples_per_second": 130.974,
424
+ "eval_steps_per_second": 3.667,
425
+ "step": 26
426
+ },
427
+ {
428
+ "epoch": 4.32,
429
+ "grad_norm": 7.125,
430
+ "learning_rate": 2.844827586206897e-05,
431
+ "loss": 0.6701,
432
+ "step": 27
433
+ },
434
+ {
435
+ "epoch": 4.32,
436
+ "eval_accuracy": 0.52,
437
+ "eval_loss": 0.6942812204360962,
438
+ "eval_runtime": 1.9094,
439
+ "eval_samples_per_second": 130.934,
440
+ "eval_steps_per_second": 3.666,
441
+ "step": 27
442
+ },
443
+ {
444
+ "epoch": 4.48,
445
+ "grad_norm": 1.484375,
446
+ "learning_rate": 2.7586206896551727e-05,
447
+ "loss": 0.7093,
448
+ "step": 28
449
+ },
450
+ {
451
+ "epoch": 4.48,
452
+ "eval_accuracy": 0.52,
453
+ "eval_loss": 0.6918594241142273,
454
+ "eval_runtime": 1.9103,
455
+ "eval_samples_per_second": 130.869,
456
+ "eval_steps_per_second": 3.664,
457
+ "step": 28
458
+ },
459
+ {
460
+ "epoch": 4.64,
461
+ "grad_norm": 5.0,
462
+ "learning_rate": 2.672413793103448e-05,
463
+ "loss": 0.6803,
464
+ "step": 29
465
+ },
466
+ {
467
+ "epoch": 4.64,
468
+ "eval_accuracy": 0.52,
469
+ "eval_loss": 0.6925703287124634,
470
+ "eval_runtime": 1.9097,
471
+ "eval_samples_per_second": 130.908,
472
+ "eval_steps_per_second": 3.665,
473
+ "step": 29
474
+ },
475
+ {
476
+ "epoch": 4.8,
477
+ "grad_norm": 0.91015625,
478
+ "learning_rate": 2.5862068965517244e-05,
479
+ "loss": 0.6953,
480
+ "step": 30
481
+ },
482
+ {
483
+ "epoch": 4.8,
484
+ "eval_accuracy": 0.516,
485
+ "eval_loss": 0.6929374933242798,
486
+ "eval_runtime": 1.9088,
487
+ "eval_samples_per_second": 130.971,
488
+ "eval_steps_per_second": 3.667,
489
+ "step": 30
490
+ },
491
+ {
492
+ "epoch": 4.96,
493
+ "grad_norm": 4.1875,
494
+ "learning_rate": 2.5e-05,
495
+ "loss": 0.6946,
496
+ "step": 31
497
+ },
498
+ {
499
+ "epoch": 4.96,
500
+ "eval_accuracy": 0.508,
501
+ "eval_loss": 0.6934375166893005,
502
+ "eval_runtime": 1.908,
503
+ "eval_samples_per_second": 131.026,
504
+ "eval_steps_per_second": 3.669,
505
+ "step": 31
506
+ },
507
+ {
508
+ "epoch": 5.12,
509
+ "grad_norm": 1.40625,
510
+ "learning_rate": 2.413793103448276e-05,
511
+ "loss": 0.7016,
512
+ "step": 32
513
+ },
514
+ {
515
+ "epoch": 5.12,
516
+ "eval_accuracy": 0.504,
517
+ "eval_loss": 0.6947265863418579,
518
+ "eval_runtime": 1.9084,
519
+ "eval_samples_per_second": 131.001,
520
+ "eval_steps_per_second": 3.668,
521
+ "step": 32
522
+ },
523
+ {
524
+ "epoch": 5.28,
525
+ "grad_norm": 3.03125,
526
+ "learning_rate": 2.327586206896552e-05,
527
+ "loss": 0.6953,
528
+ "step": 33
529
+ },
530
+ {
531
+ "epoch": 5.28,
532
+ "eval_accuracy": 0.504,
533
+ "eval_loss": 0.6949218511581421,
534
+ "eval_runtime": 1.9078,
535
+ "eval_samples_per_second": 131.039,
536
+ "eval_steps_per_second": 3.669,
537
+ "step": 33
538
+ },
539
+ {
540
+ "epoch": 5.44,
541
+ "grad_norm": 1.4609375,
542
+ "learning_rate": 2.2413793103448276e-05,
543
+ "loss": 0.6936,
544
+ "step": 34
545
+ },
546
+ {
547
+ "epoch": 5.44,
548
+ "eval_accuracy": 0.504,
549
+ "eval_loss": 0.6933984160423279,
550
+ "eval_runtime": 1.9062,
551
+ "eval_samples_per_second": 131.154,
552
+ "eval_steps_per_second": 3.672,
553
+ "step": 34
554
+ },
555
+ {
556
+ "epoch": 5.6,
557
+ "grad_norm": 4.21875,
558
+ "learning_rate": 2.1551724137931033e-05,
559
+ "loss": 0.6759,
560
+ "step": 35
561
+ },
562
+ {
563
+ "epoch": 5.6,
564
+ "eval_accuracy": 0.512,
565
+ "eval_loss": 0.6927656531333923,
566
+ "eval_runtime": 1.9079,
567
+ "eval_samples_per_second": 131.032,
568
+ "eval_steps_per_second": 3.669,
569
+ "step": 35
570
+ },
571
+ {
572
+ "epoch": 5.76,
573
+ "grad_norm": 3.890625,
574
+ "learning_rate": 2.0689655172413793e-05,
575
+ "loss": 0.6911,
576
+ "step": 36
577
+ },
578
+ {
579
+ "epoch": 5.76,
580
+ "eval_accuracy": 0.516,
581
+ "eval_loss": 0.691476583480835,
582
+ "eval_runtime": 1.9084,
583
+ "eval_samples_per_second": 131.001,
584
+ "eval_steps_per_second": 3.668,
585
+ "step": 36
586
+ },
587
+ {
588
+ "epoch": 5.92,
589
+ "grad_norm": 3.921875,
590
+ "learning_rate": 1.9827586206896554e-05,
591
+ "loss": 0.7045,
592
+ "step": 37
593
+ },
594
+ {
595
+ "epoch": 5.92,
596
+ "eval_accuracy": 0.516,
597
+ "eval_loss": 0.6917109489440918,
598
+ "eval_runtime": 1.9104,
599
+ "eval_samples_per_second": 130.863,
600
+ "eval_steps_per_second": 3.664,
601
+ "step": 37
602
+ },
603
+ {
604
+ "epoch": 6.08,
605
+ "grad_norm": 6.53125,
606
+ "learning_rate": 1.896551724137931e-05,
607
+ "loss": 0.6951,
608
+ "step": 38
609
+ },
610
+ {
611
+ "epoch": 6.08,
612
+ "eval_accuracy": 0.516,
613
+ "eval_loss": 0.6929374933242798,
614
+ "eval_runtime": 1.9058,
615
+ "eval_samples_per_second": 131.178,
616
+ "eval_steps_per_second": 3.673,
617
+ "step": 38
618
+ },
619
+ {
620
+ "epoch": 6.24,
621
+ "grad_norm": 3.671875,
622
+ "learning_rate": 1.810344827586207e-05,
623
+ "loss": 0.6766,
624
+ "step": 39
625
+ },
626
+ {
627
+ "epoch": 6.24,
628
+ "eval_accuracy": 0.52,
629
+ "eval_loss": 0.6927499771118164,
630
+ "eval_runtime": 1.908,
631
+ "eval_samples_per_second": 131.03,
632
+ "eval_steps_per_second": 3.669,
633
+ "step": 39
634
+ },
635
+ {
636
+ "epoch": 6.4,
637
+ "grad_norm": 2.421875,
638
+ "learning_rate": 1.7241379310344828e-05,
639
+ "loss": 0.6964,
640
+ "step": 40
641
+ },
642
+ {
643
+ "epoch": 6.4,
644
+ "eval_accuracy": 0.52,
645
+ "eval_loss": 0.693472683429718,
646
+ "eval_runtime": 1.9083,
647
+ "eval_samples_per_second": 131.006,
648
+ "eval_steps_per_second": 3.668,
649
+ "step": 40
650
+ },
651
+ {
652
+ "epoch": 6.5600000000000005,
653
+ "grad_norm": 0.9765625,
654
+ "learning_rate": 1.6379310344827585e-05,
655
+ "loss": 0.6899,
656
+ "step": 41
657
+ },
658
+ {
659
+ "epoch": 6.5600000000000005,
660
+ "eval_accuracy": 0.52,
661
+ "eval_loss": 0.69287109375,
662
+ "eval_runtime": 1.9071,
663
+ "eval_samples_per_second": 131.089,
664
+ "eval_steps_per_second": 3.67,
665
+ "step": 41
666
+ },
667
+ {
668
+ "epoch": 6.72,
669
+ "grad_norm": 3.21875,
670
+ "learning_rate": 1.5517241379310346e-05,
671
+ "loss": 0.6783,
672
+ "step": 42
673
+ },
674
+ {
675
+ "epoch": 6.72,
676
+ "eval_accuracy": 0.52,
677
+ "eval_loss": 0.6933398246765137,
678
+ "eval_runtime": 1.9073,
679
+ "eval_samples_per_second": 131.076,
680
+ "eval_steps_per_second": 3.67,
681
+ "step": 42
682
+ },
683
+ {
684
+ "epoch": 6.88,
685
+ "grad_norm": 0.87890625,
686
+ "learning_rate": 1.4655172413793103e-05,
687
+ "loss": 0.6921,
688
+ "step": 43
689
+ },
690
+ {
691
+ "epoch": 6.88,
692
+ "eval_accuracy": 0.52,
693
+ "eval_loss": 0.6933085918426514,
694
+ "eval_runtime": 1.9103,
695
+ "eval_samples_per_second": 130.87,
696
+ "eval_steps_per_second": 3.664,
697
+ "step": 43
698
+ },
699
+ {
700
+ "epoch": 7.04,
701
+ "grad_norm": 2.609375,
702
+ "learning_rate": 1.3793103448275863e-05,
703
+ "loss": 0.684,
704
+ "step": 44
705
+ },
706
+ {
707
+ "epoch": 7.04,
708
+ "eval_accuracy": 0.52,
709
+ "eval_loss": 0.6930469274520874,
710
+ "eval_runtime": 1.9088,
711
+ "eval_samples_per_second": 130.974,
712
+ "eval_steps_per_second": 3.667,
713
+ "step": 44
714
+ },
715
+ {
716
+ "epoch": 7.2,
717
+ "grad_norm": 6.3125,
718
+ "learning_rate": 1.2931034482758622e-05,
719
+ "loss": 0.7027,
720
+ "step": 45
721
+ },
722
+ {
723
+ "epoch": 7.2,
724
+ "eval_accuracy": 0.52,
725
+ "eval_loss": 0.6939062476158142,
726
+ "eval_runtime": 1.909,
727
+ "eval_samples_per_second": 130.958,
728
+ "eval_steps_per_second": 3.667,
729
+ "step": 45
730
+ },
731
+ {
732
+ "epoch": 7.36,
733
+ "grad_norm": 3.78125,
734
+ "learning_rate": 1.206896551724138e-05,
735
+ "loss": 0.6893,
736
+ "step": 46
737
+ },
738
+ {
739
+ "epoch": 7.36,
740
+ "eval_accuracy": 0.52,
741
+ "eval_loss": 0.6937148571014404,
742
+ "eval_runtime": 1.9058,
743
+ "eval_samples_per_second": 131.178,
744
+ "eval_steps_per_second": 3.673,
745
+ "step": 46
746
+ },
747
+ {
748
+ "epoch": 7.52,
749
+ "grad_norm": 3.4375,
750
+ "learning_rate": 1.1206896551724138e-05,
751
+ "loss": 0.6754,
752
+ "step": 47
753
+ },
754
+ {
755
+ "epoch": 7.52,
756
+ "eval_accuracy": 0.52,
757
+ "eval_loss": 0.6943007707595825,
758
+ "eval_runtime": 1.8591,
759
+ "eval_samples_per_second": 134.472,
760
+ "eval_steps_per_second": 3.765,
761
+ "step": 47
762
+ },
763
+ {
764
+ "epoch": 7.68,
765
+ "grad_norm": 1.7109375,
766
+ "learning_rate": 1.0344827586206897e-05,
767
+ "loss": 0.7103,
768
+ "step": 48
769
+ },
770
+ {
771
+ "epoch": 7.68,
772
+ "eval_accuracy": 0.52,
773
+ "eval_loss": 0.6930898427963257,
774
+ "eval_runtime": 1.9082,
775
+ "eval_samples_per_second": 131.014,
776
+ "eval_steps_per_second": 3.668,
777
+ "step": 48
778
+ },
779
+ {
780
+ "epoch": 7.84,
781
+ "grad_norm": 6.0625,
782
+ "learning_rate": 9.482758620689655e-06,
783
+ "loss": 0.6965,
784
+ "step": 49
785
+ },
786
+ {
787
+ "epoch": 7.84,
788
+ "eval_accuracy": 0.52,
789
+ "eval_loss": 0.6940312385559082,
790
+ "eval_runtime": 1.9059,
791
+ "eval_samples_per_second": 131.173,
792
+ "eval_steps_per_second": 3.673,
793
+ "step": 49
794
+ },
795
+ {
796
+ "epoch": 8.0,
797
+ "grad_norm": 5.46875,
798
+ "learning_rate": 8.620689655172414e-06,
799
+ "loss": 0.682,
800
+ "step": 50
801
+ },
802
+ {
803
+ "epoch": 8.0,
804
+ "eval_accuracy": 0.52,
805
+ "eval_loss": 0.6938086152076721,
806
+ "eval_runtime": 1.9046,
807
+ "eval_samples_per_second": 131.261,
808
+ "eval_steps_per_second": 3.675,
809
+ "step": 50
810
+ },
811
+ {
812
+ "epoch": 8.16,
813
+ "grad_norm": 2.15625,
814
+ "learning_rate": 7.758620689655173e-06,
815
+ "loss": 0.6914,
816
+ "step": 51
817
+ },
818
+ {
819
+ "epoch": 8.16,
820
+ "eval_accuracy": 0.52,
821
+ "eval_loss": 0.6924687623977661,
822
+ "eval_runtime": 1.9055,
823
+ "eval_samples_per_second": 131.197,
824
+ "eval_steps_per_second": 3.674,
825
+ "step": 51
826
+ },
827
+ {
828
+ "epoch": 8.32,
829
+ "grad_norm": 4.09375,
830
+ "learning_rate": 6.896551724137932e-06,
831
+ "loss": 0.6963,
832
+ "step": 52
833
+ },
834
+ {
835
+ "epoch": 8.32,
836
+ "eval_accuracy": 0.52,
837
+ "eval_loss": 0.6934570074081421,
838
+ "eval_runtime": 1.9059,
839
+ "eval_samples_per_second": 131.17,
840
+ "eval_steps_per_second": 3.673,
841
+ "step": 52
842
+ },
843
+ {
844
+ "epoch": 8.48,
845
+ "grad_norm": 1.2265625,
846
+ "learning_rate": 6.03448275862069e-06,
847
+ "loss": 0.6962,
848
+ "step": 53
849
+ },
850
+ {
851
+ "epoch": 8.48,
852
+ "eval_accuracy": 0.52,
853
+ "eval_loss": 0.6923359632492065,
854
+ "eval_runtime": 1.9059,
855
+ "eval_samples_per_second": 131.173,
856
+ "eval_steps_per_second": 3.673,
857
+ "step": 53
858
+ },
859
+ {
860
+ "epoch": 8.64,
861
+ "grad_norm": 3.578125,
862
+ "learning_rate": 5.172413793103448e-06,
863
+ "loss": 0.6692,
864
+ "step": 54
865
+ },
866
+ {
867
+ "epoch": 8.64,
868
+ "eval_accuracy": 0.52,
869
+ "eval_loss": 0.6927656531333923,
870
+ "eval_runtime": 1.906,
871
+ "eval_samples_per_second": 131.168,
872
+ "eval_steps_per_second": 3.673,
873
+ "step": 54
874
+ },
875
+ {
876
+ "epoch": 8.8,
877
+ "grad_norm": 1.7421875,
878
+ "learning_rate": 4.310344827586207e-06,
879
+ "loss": 0.6991,
880
+ "step": 55
881
+ },
882
+ {
883
+ "epoch": 8.8,
884
+ "eval_accuracy": 0.52,
885
+ "eval_loss": 0.6923280954360962,
886
+ "eval_runtime": 1.9063,
887
+ "eval_samples_per_second": 131.146,
888
+ "eval_steps_per_second": 3.672,
889
+ "step": 55
890
+ },
891
+ {
892
+ "epoch": 8.96,
893
+ "grad_norm": 1.1796875,
894
+ "learning_rate": 3.448275862068966e-06,
895
+ "loss": 0.6808,
896
+ "step": 56
897
+ },
898
+ {
899
+ "epoch": 8.96,
900
+ "eval_accuracy": 0.52,
901
+ "eval_loss": 0.692800760269165,
902
+ "eval_runtime": 1.9066,
903
+ "eval_samples_per_second": 131.124,
904
+ "eval_steps_per_second": 3.671,
905
+ "step": 56
906
+ },
907
+ {
908
+ "epoch": 9.12,
909
+ "grad_norm": 9.25,
910
+ "learning_rate": 2.586206896551724e-06,
911
+ "loss": 0.7043,
912
+ "step": 57
913
+ },
914
+ {
915
+ "epoch": 9.12,
916
+ "eval_accuracy": 0.52,
917
+ "eval_loss": 0.6924726366996765,
918
+ "eval_runtime": 1.9066,
919
+ "eval_samples_per_second": 131.123,
920
+ "eval_steps_per_second": 3.671,
921
+ "step": 57
922
+ },
923
+ {
924
+ "epoch": 9.28,
925
+ "grad_norm": 1.15625,
926
+ "learning_rate": 1.724137931034483e-06,
927
+ "loss": 0.6786,
928
+ "step": 58
929
+ },
930
+ {
931
+ "epoch": 9.28,
932
+ "eval_accuracy": 0.52,
933
+ "eval_loss": 0.6920429468154907,
934
+ "eval_runtime": 1.9069,
935
+ "eval_samples_per_second": 131.104,
936
+ "eval_steps_per_second": 3.671,
937
+ "step": 58
938
+ },
939
+ {
940
+ "epoch": 9.44,
941
+ "grad_norm": 6.125,
942
+ "learning_rate": 8.620689655172415e-07,
943
+ "loss": 0.6852,
944
+ "step": 59
945
+ },
946
+ {
947
+ "epoch": 9.44,
948
+ "eval_accuracy": 0.52,
949
+ "eval_loss": 0.6916835904121399,
950
+ "eval_runtime": 1.9088,
951
+ "eval_samples_per_second": 130.97,
952
+ "eval_steps_per_second": 3.667,
953
+ "step": 59
954
+ },
955
+ {
956
+ "epoch": 9.6,
957
+ "grad_norm": 1.3828125,
958
+ "learning_rate": 0.0,
959
+ "loss": 0.6888,
960
+ "step": 60
961
+ },
962
+ {
963
+ "epoch": 9.6,
964
+ "eval_accuracy": 0.52,
965
+ "eval_loss": 0.6920117139816284,
966
+ "eval_runtime": 1.9079,
967
+ "eval_samples_per_second": 131.035,
968
+ "eval_steps_per_second": 3.669,
969
+ "step": 60
970
+ },
971
+ {
972
+ "epoch": 9.6,
973
+ "step": 60,
974
+ "total_flos": 2.337091978736435e+16,
975
+ "train_loss": 0.6971277634302775,
976
+ "train_runtime": 291.0168,
977
+ "train_samples_per_second": 34.362,
978
+ "train_steps_per_second": 0.206
979
+ }
980
+ ],
981
+ "logging_steps": 1,
982
+ "max_steps": 60,
983
+ "num_input_tokens_seen": 0,
984
+ "num_train_epochs": 10,
985
+ "save_steps": 500,
986
+ "stateful_callbacks": {
987
+ "TrainerControl": {
988
+ "args": {
989
+ "should_epoch_stop": false,
990
+ "should_evaluate": false,
991
+ "should_log": false,
992
+ "should_save": false,
993
+ "should_training_stop": false
994
+ },
995
+ "attributes": {}
996
+ }
997
+ },
998
+ "total_flos": 2.337091978736435e+16,
999
+ "train_batch_size": 10,
1000
+ "trial_name": null,
1001
+ "trial_params": null
1002
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68472283c67ba76a2e2a15e33d92f180feafc6ff186bb481f424d2d65a117a63
3
+ size 5112
vocab.json ADDED
The diff for this file is too large to render. See raw diff