File size: 1,866 Bytes
751291e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
library_name: peft
tags:
- Summarization
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
base_model: google/flan-t5-base
model-index:
- name: flan-t5-base-finetuned-QLoRA-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base-finetuned-QLoRA-v2

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1284
- Rouge1: 0.2459
- Rouge2: 0.1133
- Rougel: 0.2014
- Rougelsum: 0.2312

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 3.2738        | 1.0   | 500  | 2.5624          | 0.2375 | 0.1097 | 0.1987 | 0.223     |
| 1.8824        | 2.0   | 1000 | 1.2830          | 0.2419 | 0.11   | 0.1988 | 0.2278    |
| 1.6192        | 3.0   | 1500 | 1.1527          | 0.2477 | 0.1149 | 0.2033 | 0.2325    |
| 1.5256        | 4.0   | 2000 | 1.1284          | 0.2459 | 0.1133 | 0.2014 | 0.2312    |


### Framework versions

- PEFT 0.8.2
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1