RMWeerasinghe
commited on
Training complete
Browse files
README.md
CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the cnn_dailymail dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 1.
|
25 |
-
- Rouge1: 0.
|
26 |
-
- Rouge2: 0.
|
27 |
-
- Rougel: 0.
|
28 |
-
- Rougelsum: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -50,16 +50,22 @@ The following hyperparameters were used during training:
|
|
50 |
- seed: 42
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
-
- num_epochs:
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
59 |
-
| 3.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
### Framework versions
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the cnn_dailymail dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 1.0254
|
25 |
+
- Rouge1: 0.244
|
26 |
+
- Rouge2: 0.111
|
27 |
+
- Rougel: 0.2032
|
28 |
+
- Rougelsum: 0.2292
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
50 |
- seed: 42
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
59 |
+
| 3.0551 | 1.0 | 500 | 2.2941 | 0.2336 | 0.1092 | 0.1969 | 0.217 |
|
60 |
+
| 1.6422 | 2.0 | 1000 | 1.1665 | 0.2459 | 0.1088 | 0.1991 | 0.227 |
|
61 |
+
| 1.4067 | 3.0 | 1500 | 1.0762 | 0.2462 | 0.1089 | 0.1982 | 0.2296 |
|
62 |
+
| 1.2856 | 4.0 | 2000 | 1.0518 | 0.2448 | 0.1112 | 0.2036 | 0.2298 |
|
63 |
+
| 1.3478 | 5.0 | 2500 | 1.0393 | 0.2458 | 0.1125 | 0.2056 | 0.2303 |
|
64 |
+
| 1.2114 | 6.0 | 3000 | 1.0340 | 0.2497 | 0.1145 | 0.2084 | 0.2333 |
|
65 |
+
| 1.3311 | 7.0 | 3500 | 1.0298 | 0.2479 | 0.1143 | 0.207 | 0.233 |
|
66 |
+
| 1.3081 | 8.0 | 4000 | 1.0270 | 0.2448 | 0.1112 | 0.2035 | 0.2301 |
|
67 |
+
| 1.1794 | 9.0 | 4500 | 1.0258 | 0.2449 | 0.1112 | 0.2036 | 0.2301 |
|
68 |
+
| 1.2407 | 10.0 | 5000 | 1.0254 | 0.244 | 0.111 | 0.2032 | 0.2292 |
|
69 |
|
70 |
|
71 |
### Framework versions
|