Rajaram Sivaramakrishnan commited on
Commit
12c8ba0
·
1 Parent(s): 5d4f7a9

update eval script

Browse files
Files changed (1) hide show
  1. README.md +22 -22
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Test WER
23
  type: wer
24
- value: 70.72
25
  ---
26
  # Wav2Vec2-Large-XLSR-53-tamil
27
 
@@ -49,16 +49,16 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
49
  # We need to read the aduio files as arrays
50
 
51
  def speech_file_to_array_fn(batch):
52
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
53
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
54
- \treturn batch
55
- \t
56
  test_dataset = test_dataset.map(speech_file_to_array_fn)
57
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
 
59
  with torch.no_grad():
60
- \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
- \t
62
  predicted_ids = torch.argmax(logits, dim=-1)
63
  print("Prediction:", processor.batch_decode(predicted_ids))
64
  print("Reference:", test_dataset["sentence"][:2])
@@ -79,8 +79,8 @@ test_dataset = load_dataset("common_voice", "ta", split="test")
79
 
80
  wer = load_metric("wer")
81
 
82
- processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-tamil")
83
- model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-tamil")
84
 
85
  model.to("cuda")
86
  chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
@@ -90,25 +90,25 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
90
  # Preprocessing the datasets.
91
  # We need to read the aduio files as arrays
92
  def speech_file_to_array_fn(batch):
93
- \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
94
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
95
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
96
- \treturn batch
97
- \t
98
  test_dataset = test_dataset.map(speech_file_to_array_fn)
99
 
100
  # Preprocessing the datasets.
101
  # We need to read the aduio files as arrays
102
  def evaluate(batch):
103
- \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
104
- \twith torch.no_grad():
105
- \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
106
  pred_ids = torch.argmax(logits, dim=-1)
107
- \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
108
- \treturn batch
109
- \t
110
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
111
- print("WER: {:2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["target"])))
112
  ```
113
 
114
- **Test Result**: 70.72 %
 
21
  metrics:
22
  - name: Test WER
23
  type: wer
24
+ value: 69.76
25
  ---
26
  # Wav2Vec2-Large-XLSR-53-tamil
27
 
 
49
  # We need to read the aduio files as arrays
50
 
51
  def speech_file_to_array_fn(batch):
52
+ \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
53
+ \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
54
+ \\treturn batch
55
+ \\t
56
  test_dataset = test_dataset.map(speech_file_to_array_fn)
57
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
 
59
  with torch.no_grad():
60
+ \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
+ \\t
62
  predicted_ids = torch.argmax(logits, dim=-1)
63
  print("Prediction:", processor.batch_decode(predicted_ids))
64
  print("Reference:", test_dataset["sentence"][:2])
 
79
 
80
  wer = load_metric("wer")
81
 
82
+ processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
83
+ model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
84
 
85
  model.to("cuda")
86
  chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
 
90
  # Preprocessing the datasets.
91
  # We need to read the aduio files as arrays
92
  def speech_file_to_array_fn(batch):
93
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
94
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
95
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
96
+ return batch
97
+
98
  test_dataset = test_dataset.map(speech_file_to_array_fn)
99
 
100
  # Preprocessing the datasets.
101
  # We need to read the aduio files as arrays
102
  def evaluate(batch):
103
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
104
+ with torch.no_grad():
105
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
106
  pred_ids = torch.argmax(logits, dim=-1)
107
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
108
+ return batch
109
+
110
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
111
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
112
  ```
113
 
114
+ **Test Result**: 69.76 %