File size: 7,368 Bytes
5c20d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import argparse
import os
from regex import R
abs_path = os.path.abspath('.')
# base_dir = os.path.dirname(os.path.dirname(abs_path))
base_dir = os.path.dirname(abs_path)
os.environ['TRANSFORMERS_CACHE'] = os.path.join(base_dir, 'models_cache')
os.environ['TRANSFORMERS_OFFLINE'] = '0'
os.environ['HF_DATASETS_CACHE'] = os.path.join(base_dir, 'datasets_cache')
os.environ['HF_DATASETS_OFFLINE'] = '0'
from transformers import pipeline
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
from bnunicodenormalizer import Normalizer
import evaluate
import unicodedata
wer_metric = evaluate.load("wer", cache_dir=os.path.join(base_dir, "metrics_cache"))
cer_metric = evaluate.load("cer", cache_dir=os.path.join(base_dir, "metrics_cache"))
def is_target_text_in_range(ref):
if ref.strip() == "ignore time segment in scoring":
return False
else:
return ref.strip() != ""
def get_text(sample):
if "text" in sample:
return sample["text"]
elif "sentence" in sample:
return sample["sentence"]
elif "normalized_text" in sample:
return sample["normalized_text"]
elif "transcript" in sample:
return sample["transcript"]
elif "transcription" in sample:
return sample["transcription"]
else:
raise ValueError(
"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
".join{sample.keys()}. Ensure a text column name is present in the dataset."
)
whisper_norm = BasicTextNormalizer()
bangla_normalizer = Normalizer(allow_english=True)
def normalise(batch):
batch["norm_text"] = whisper_norm(get_text(batch))
return batch
def removeOptionalZW(text):
"""
Removes all optional occurrences of ZWNJ or ZWJ from Bangla text.
"""
# Regex for matching zero witdh joiner variations.
STANDARDIZE_ZW = re.compile(r'(?<=\u09b0)[\u200c\u200d]+(?=\u09cd\u09af)')
# Regex for removing standardized zero width joiner, except in edge cases.
DELETE_ZW = re.compile(r'(?<!\u09b0)[\u200c\u200d](?!\u09cd\u09af)')
text = STANDARDIZE_ZW.sub('\u200D', text)
text = DELETE_ZW.sub('', text)
return text
def bn_unicode_normalise(batch):
_words = [bangla_normalizer(word)['normalized'] for word in get_text(batch).split()]
normalized_text = " ".join([word for word in _words if word is not None])
normalized_text = normalized_text.replace("\u2047", "-")
normalized_text = normalized_text.replace(u"\u098c", u"\u09ef")
normalized_text = unicodedata.normalize("NFC", normalized_text)
normalized_text = removeOptionalZW(normalized_text)
batch["norm_text"] = whisper_norm(normalized_text)
return batch
def data(dataset):
for item in dataset:
yield {**item["audio"], "reference": item["norm_text"]}
def main(args):
batch_size = args.batch_size
whisper_asr = pipeline(
"automatic-speech-recognition", model=args.model_id, device=args.device
)
whisper_asr.model.config.forced_decoder_ids = (
whisper_asr.tokenizer.get_decoder_prompt_ids(
language=args.language, task="transcribe"
)
)
dataset = load_dataset(
args.dataset,
args.config,
split=args.split,
streaming=args.streaming,
use_auth_token=True,
cache_dir=os.path.join(base_dir, 'datasets_cache'),
)
# Only uncomment for debugging
dataset = dataset.take(args.max_eval_samples)
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
if args.do_bangla_unicode_normalize:
print("\n\n Doing Unicode Normalization! Make sure you have chosen the Bengali split of your dataset! \n\n")
dataset = dataset.map(bn_unicode_normalise)
else:
dataset = dataset.map(normalise)
dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
predictions = []
references = []
# run streamed inference
for out in whisper_asr(data(dataset), batch_size=batch_size):
predictions.append(whisper_norm(out["text"]))
references.append(out["reference"][0])
wer = wer_metric.compute(references=references, predictions=predictions)
wer = round(100 * wer, 2)
cer = cer_metric.compute(references=references, predictions=predictions)
cer = round(100 * cer, 2)
print(f"\n\n WER: {wer} \n\n")
print(f"\n\n CER: {cer} \n\n")
evaluate.push_to_hub(
model_id=args.model_id,
metric_value=wer,
metric_type="wer",
metric_name="WER",
dataset_name=args.dataset,
dataset_type=args.dataset,
dataset_split=args.split,
dataset_config=args.config,
task_type="automatic-speech-recognition",
task_name="Automatic Speech Recognition",
overwrite=True
)
evaluate.push_to_hub(
model_id=args.model_id,
metric_value=cer,
metric_type="cer",
metric_name="CER",
dataset_name=args.dataset,
dataset_type=args.dataset,
dataset_split=args.split,
dataset_config=args.config,
task_type="automatic-speech-recognition",
task_name="Automatic Speech Recognition",
overwrite=True
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id",
type=str,
required=True,
help="Model identifier. Should be loadable with 🤗 Transformers",
)
parser.add_argument(
"--dataset",
type=str,
default="mozilla-foundation/common_voice_11_0",
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config",
type=str,
required=True,
help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
)
parser.add_argument(
"--split",
type=str,
default="test",
help="Split of the dataset. *E.g.* `'test'`",
)
parser.add_argument(
"--device",
type=int,
default=-1,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
parser.add_argument(
"--batch_size",
type=int,
default=16,
help="Number of samples to go through each streamed batch.",
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
)
parser.add_argument(
"--streaming",
type=bool,
default=True,
help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
)
parser.add_argument(
"--do_bangla_unicode_normalize",
type=bool,
default=True,
help="Choose whether you'd like to perform unicode normalization on your Bengali",
)
parser.add_argument(
"--language",
type=str,
required=True,
help="Two letter language code for the transcription language, e.g. use 'en' for English.",
)
args = parser.parse_args()
main(args)
|