File size: 7,368 Bytes
5c20d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse
import os
from regex import R

abs_path = os.path.abspath('.')
# base_dir = os.path.dirname(os.path.dirname(abs_path))
base_dir = os.path.dirname(abs_path)


os.environ['TRANSFORMERS_CACHE'] = os.path.join(base_dir, 'models_cache')
os.environ['TRANSFORMERS_OFFLINE'] = '0'
os.environ['HF_DATASETS_CACHE'] = os.path.join(base_dir, 'datasets_cache')
os.environ['HF_DATASETS_OFFLINE'] = '0'

from transformers import pipeline
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
from bnunicodenormalizer import Normalizer
import evaluate
import unicodedata

wer_metric = evaluate.load("wer", cache_dir=os.path.join(base_dir, "metrics_cache"))
cer_metric = evaluate.load("cer", cache_dir=os.path.join(base_dir, "metrics_cache"))


def is_target_text_in_range(ref):
    if ref.strip() == "ignore time segment in scoring":
        return False
    else:
        return ref.strip() != ""


def get_text(sample):
    if "text" in sample:
        return sample["text"]
    elif "sentence" in sample:
        return sample["sentence"]
    elif "normalized_text" in sample:
        return sample["normalized_text"]
    elif "transcript" in sample:
        return sample["transcript"]
    elif "transcription" in sample:
        return sample["transcription"]
    else:
        raise ValueError(
            "Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
            ".join{sample.keys()}. Ensure a text column name is present in the dataset."
        )


whisper_norm = BasicTextNormalizer()
bangla_normalizer = Normalizer(allow_english=True)


def normalise(batch):
    batch["norm_text"] = whisper_norm(get_text(batch))
    return batch

def removeOptionalZW(text):
    """
    Removes all optional occurrences of ZWNJ or ZWJ from Bangla text.
    """
    # Regex for matching zero witdh joiner variations.
    STANDARDIZE_ZW = re.compile(r'(?<=\u09b0)[\u200c\u200d]+(?=\u09cd\u09af)')

    # Regex for removing standardized zero width joiner, except in edge cases.
    DELETE_ZW = re.compile(r'(?<!\u09b0)[\u200c\u200d](?!\u09cd\u09af)')
    
    text = STANDARDIZE_ZW.sub('\u200D', text)
    text = DELETE_ZW.sub('', text)
    return text

def bn_unicode_normalise(batch):
    _words = [bangla_normalizer(word)['normalized'] for word in get_text(batch).split()]
    normalized_text = " ".join([word for word in _words if word is not None])
    normalized_text = normalized_text.replace("\u2047", "-")
    normalized_text = normalized_text.replace(u"\u098c", u"\u09ef")
    normalized_text = unicodedata.normalize("NFC", normalized_text)
    normalized_text = removeOptionalZW(normalized_text)
    batch["norm_text"] = whisper_norm(normalized_text)
    return batch


def data(dataset):
    for item in dataset:
        yield {**item["audio"], "reference": item["norm_text"]}


def main(args):
    batch_size = args.batch_size
    whisper_asr = pipeline(
        "automatic-speech-recognition", model=args.model_id, device=args.device
    )

    whisper_asr.model.config.forced_decoder_ids = (
        whisper_asr.tokenizer.get_decoder_prompt_ids(
            language=args.language, task="transcribe"
        )
    )

    dataset = load_dataset(
        args.dataset,
        args.config,
        split=args.split,
        streaming=args.streaming,
        use_auth_token=True,
        cache_dir=os.path.join(base_dir, 'datasets_cache'),
    )

    # Only uncomment for debugging
    dataset = dataset.take(args.max_eval_samples)

    dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
    
    if args.do_bangla_unicode_normalize:
        print("\n\n Doing Unicode Normalization! Make sure you have chosen the Bengali split of your dataset! \n\n")
        dataset = dataset.map(bn_unicode_normalise)
    else:
        dataset = dataset.map(normalise)
            
    dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])

    predictions = []
    references = []

    # run streamed inference
    for out in whisper_asr(data(dataset), batch_size=batch_size):
        predictions.append(whisper_norm(out["text"]))
        references.append(out["reference"][0])

    wer = wer_metric.compute(references=references, predictions=predictions)
    wer = round(100 * wer, 2)
    
    cer = cer_metric.compute(references=references, predictions=predictions)
    cer = round(100 * cer, 2)

    print(f"\n\n WER: {wer} \n\n")
    print(f"\n\n CER: {cer} \n\n")
    
    evaluate.push_to_hub(
        model_id=args.model_id,
        metric_value=wer,
        metric_type="wer",
        metric_name="WER",
        dataset_name=args.dataset,
        dataset_type=args.dataset,
        dataset_split=args.split,
        dataset_config=args.config,
        task_type="automatic-speech-recognition",
        task_name="Automatic Speech Recognition",
        overwrite=True
    )
    
    evaluate.push_to_hub(
        model_id=args.model_id,
        metric_value=cer,
        metric_type="cer",
        metric_name="CER",
        dataset_name=args.dataset,
        dataset_type=args.dataset,
        dataset_split=args.split,
        dataset_config=args.config,
        task_type="automatic-speech-recognition",
        task_name="Automatic Speech Recognition",
        overwrite=True
    )
        


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_id",
        type=str,
        required=True,
        help="Model identifier. Should be loadable with 🤗 Transformers",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        default="mozilla-foundation/common_voice_11_0",
        help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
    )
    parser.add_argument(
        "--config",
        type=str,
        required=True,
        help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
    )
    parser.add_argument(
        "--split",
        type=str,
        default="test",
        help="Split of the dataset. *E.g.* `'test'`",
    )

    parser.add_argument(
        "--device",
        type=int,
        default=-1,
        help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=16,
        help="Number of samples to go through each streamed batch.",
    )
    parser.add_argument(
        "--max_eval_samples",
        type=int,
        default=None,
        help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
    )
    parser.add_argument(
        "--streaming",
        type=bool,
        default=True,
        help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
    )
    parser.add_argument(
        "--do_bangla_unicode_normalize",
        type=bool,
        default=True,
        help="Choose whether you'd like to perform unicode normalization on your Bengali",
    )
    parser.add_argument(
        "--language",
        type=str,
        required=True,
        help="Two letter language code for the transcription language, e.g. use 'en' for English.",
    )
    
    args = parser.parse_args()

    main(args)