Ramikan-BR
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
# Instala os pacotes necessários
|
5 |
+
subprocess.run(["pip", "install", "--upgrade", "pip"])
|
6 |
+
subprocess.run(["pip", "install", "--upgrade", "torch", "transformers", "accelerate"])
|
7 |
+
subprocess.run(["pip", "install", "git+https://github.com/TimDettmers/bitsandbytes.git"])
|
8 |
+
|
9 |
+
import accelerate
|
10 |
+
import bitsandbytes
|
11 |
+
import gradio as gr
|
12 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
13 |
+
|
14 |
+
# Define a variável de ambiente para desabilitar CUDA
|
15 |
+
os.environ["TRANSFORMERS_NO_CUDA"] = "1"
|
16 |
+
|
17 |
+
# Carrega o modelo e o tokenizador
|
18 |
+
model = LlamaForCausalLM.from_pretrained("Ramikan-BR/tinyllama_PY-CODER-bnb-4bit-lora_4k-q4_k_m-v2")
|
19 |
+
tokenizer = LlamaTokenizer.from_pretrained("Ramikan-BR/tinyllama_PY-CODER-bnb-4bit-lora_4k-q4_k_m-v2")
|
20 |
+
|
21 |
+
def predict(input_text):
|
22 |
+
# Codifica o texto de entrada e gera a saída
|
23 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
24 |
+
output = model.generate(input_ids, max_length=4096, do_sample=True, top_k=50, top_p=0.50, num_return_sequences=1)
|
25 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
# Cria a interface Gradio
|
28 |
+
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
29 |
+
iface.launch()
|