Commit
·
6c4377a
1
Parent(s):
a8c29b1
default__niter=1000000
Browse files- LLv2__sb3__ppo__ns=1000000.zip +2 -2
- LLv2__sb3__ppo__ns=1000000/data +20 -20
- LLv2__sb3__ppo__ns=1000000/policy.optimizer.pth +2 -2
- LLv2__sb3__ppo__ns=1000000/policy.pth +2 -2
- LLv2__sb3__ppo__ns=1000000/system_info.txt +2 -2
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
LLv2__sb3__ppo__ns=1000000.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd420c8ac90b6852add5e27f210aebf7cbabdb7b16ee409609a4e39b4677f004
|
3 |
+
size 147228
|
LLv2__sb3__ppo__ns=1000000/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,26 +56,26 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.99,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f99f7b98e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f99f7b98ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f99f7b98f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f99f7b9f040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f99f7b9f0d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f99f7b9f160>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f99f7b9f1f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f99f7b9f280>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99f7b9f310>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f99f7b9f3a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99f7b9f430>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f99f7b9d060>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 114688,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1670621668302956786,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABnpLwU3I66bkbatInVxS6UmnE4p0IgNAAAgD8AAIA/YPMYvpiP0j0SNOk+YOrBvvBAx722DaE+AAAAAAAAAAAzCZy8ylm0P9NV7b4ssHu9OZYqPAo6ILwAAAAAAAAAAJrBk7yfDsy7Rje9vR36kzyrT/o8pf6jOwAAgD8AAIA/s3o1Pa5HiroF1XS7EZZVtTjE+7q2VY46AAAAAAAAAABaxJg+ScyXP0HtiLyK7Pe+nXk/P1Cz5L0AAAAAAAAAAGZWnTz2uH26WlxFNeJrozAbqxA7PjhPtAAAgD8AAIA/83/UvWR82D2aArc+pW1AvtMsbT6IXlI+AAAAAAAAAABNAXa9fseSPW9fqT5BSza+nqanPSNlez4AAAAAAAAAAAAogjwpwCm69nyfMqNL3DBmYzw7pux7swAAgD8AAIA/Zv7nvOJ0Pj4tZqO83UoVv+WBsr0E+L68AAAAAAAAAAAaHTM9mEL7PaN1uL4uitK+AadLvrahk74AAAAAAAAAADrxTL7IQoc+JmrdPkJ0DL+zBgC9nq92PgAAAAAAAAAAGmokPi4DGT8u4oC+tm9ev0IKRj7HdYW+AAAAAAAAAAAGbg0+05RQP/j0zz1zuRO/HVf6PlqovD0AAAAAAAAAAA3Xzr2dhok/MGLmvi86bb/Ikhy+kPCkvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.1468799999999999,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUFWhgViEc0CUhpRSlIwBbJRLxYwBdJRHQHKCHgtOEdx1fZQoaAZoCWgPQwgT1sbYydByQJSGlFKUaBVLuWgWR0Bygg4o7V8UdX2UKGgGaAloD0MIFmh3SLEJb0CUhpRSlGgVS61oFkdAcoMR+BpYcXV9lChoBmgJaA9DCE8EcR4OSnFAlIaUUpRoFUuZaBZHQHKDsv24/eN1fZQoaAZoCWgPQwicwHRa9/pwQJSGlFKUaBVLsGgWR0Byh5TER8MNdX2UKGgGaAloD0MItTUiGMdycUCUhpRSlGgVS7toFkdAcofnYQJ5V3V9lChoBmgJaA9DCCgK9Ik8V3NAlIaUUpRoFUvLaBZHQHKIw0sOG0x1fZQoaAZoCWgPQwjfMxKhUUN0QJSGlFKUaBVL9GgWR0Byig/gR9PUdX2UKGgGaAloD0MIN+M0RBWjdECUhpRSlGgVS/FoFkdAcorNwzch1XV9lChoBmgJaA9DCIunHmlwR3FAlIaUUpRoFUuwaBZHQHKLeoHcDbJ1fZQoaAZoCWgPQwhZNQhze/FyQJSGlFKUaBVL2WgWR0ByjvuCwr1/dX2UKGgGaAloD0MIdT48S5DfcUCUhpRSlGgVS7RoFkdAco+58Sf16HV9lChoBmgJaA9DCM+6RsvBRHRAlIaUUpRoFUvraBZHQHKQGS+xnnN1fZQoaAZoCWgPQwgwE0VI3T1wQJSGlFKUaBVLk2gWR0B0wCMxXXAedX2UKGgGaAloD0MIwM3ixQK4cECUhpRSlGgVS5xoFkdAdMEbO/tY0XV9lChoBmgJaA9DCJ7r+3BQpnJAlIaUUpRoFUuoaBZHQHTCCwW3z+Z1fZQoaAZoCWgPQwjo9/2bFxhTQJSGlFKUaBVLgGgWR0B0w5kRSP2gdX2UKGgGaAloD0MI5dU5BqR9c0CUhpRSlGgVS8FoFkdAdMQn4fwI+nV9lChoBmgJaA9DCIyEtpwLmHJAlIaUUpRoFUu4aBZHQHTEEoKD0191fZQoaAZoCWgPQwjDLLRz2ptxQJSGlFKUaBVLyWgWR0B0xDmig00ndX2UKGgGaAloD0MInnsPl5w3ckCUhpRSlGgVS4doFkdAdMVdQO4G2XV9lChoBmgJaA9DCHO6LCb20XNAlIaUUpRoFUvOaBZHQHTGR7NSqER1fZQoaAZoCWgPQwh4KuCe54xuQJSGlFKUaBVLm2gWR0B0xzkNnXd1dX2UKGgGaAloD0MISDSBIpaKc0CUhpRSlGgVS75oFkdAdMeOJ+DvmnV9lChoBmgJaA9DCJ1KBoAqgHJAlIaUUpRoFUumaBZHQHTIesDGLk11fZQoaAZoCWgPQwiOyHcptXJzQJSGlFKUaBVLz2gWR0B0yQH5aePJdX2UKGgGaAloD0MIxJj091L6TUCUhpRSlGgVS29oFkdAdMnT238XN3V9lChoBmgJaA9DCOSG3003XnFAlIaUUpRoFUuqaBZHQHTKiA+Y+jd1fZQoaAZoCWgPQwjNVl7yP/k9QJSGlFKUaBVLZWgWR0B0y1X+2mYTdX2UKGgGaAloD0MIu38sRAeNckCUhpRSlGgVS8loFkdAdM5NO/L1VnV9lChoBmgJaA9DCBFTIokeEHFAlIaUUpRoFUuyaBZHQHTOmlEZzgd1fZQoaAZoCWgPQwiO6J51zZlyQJSGlFKUaBVL62gWR0B00S7jDKoydX2UKGgGaAloD0MIFk7S/PFTckCUhpRSlGgVS6JoFkdAdNGl9jPOZHV9lChoBmgJaA9DCE9ZTddTOnNAlIaUUpRoFUvMaBZHQHTTVk1/DtR1fZQoaAZoCWgPQwjPvYdLTsZyQJSGlFKUaBVLqGgWR0B006fPHDJmdX2UKGgGaAloD0MIETXR56M8cUCUhpRSlGgVS5loFkdAdNOCr92ovXV9lChoBmgJaA9DCC7nUlyVJ3JAlIaUUpRoFUu6aBZHQHTUFQhwEQp1fZQoaAZoCWgPQwgxthDkICpzQJSGlFKUaBVLy2gWR0B01a9EkSmJdX2UKGgGaAloD0MIa7sJvumWckCUhpRSlGgVS7ZoFkdAdNdNbkfcOHV9lChoBmgJaA9DCPM8uDtr/XFAlIaUUpRoFUuzaBZHQHTYj6rNnoR1fZQoaAZoCWgPQwiJRQw7jEhxQJSGlFKUaBVLl2gWR0B02IijcmBwdX2UKGgGaAloD0MIYTJVMOozdECUhpRSlGgVS9ZoFkdAdNrNyHVPN3V9lChoBmgJaA9DCFuyKsJN3HJAlIaUUpRoFUuraBZHQHTbfwAlv611fZQoaAZoCWgPQwjTLTvEf5ZzQJSGlFKUaBVL0mgWR0B03WgctGutdX2UKGgGaAloD0MIH4DUJk4AcUCUhpRSlGgVS51oFkdAdN3cM3IdVHV9lChoBmgJaA9DCNLkYgzsDXJAlIaUUpRoFUvpaBZHQHTey4Bmwq11fZQoaAZoCWgPQwgW+8vuyTZxQJSGlFKUaBVLm2gWR0B04FEa2nbZdX2UKGgGaAloD0MIRZ25hwRKckCUhpRSlGgVS71oFkdAdOC10T101nV9lChoBmgJaA9DCHUF24ind3JAlIaUUpRoFUusaBZHQHTiRKHwgDB1fZQoaAZoCWgPQwhszsEzoW9yQJSGlFKUaBVLmWgWR0B05HEuQIUrdX2UKGgGaAloD0MIt9RBXk+jckCUhpRSlGgVS7hoFkdAdOT7SiM5wXV9lChoBmgJaA9DCN/hdmiY5nFAlIaUUpRoFUu5aBZHQHTlY+Ofdyl1fZQoaAZoCWgPQwjlJf+Tv3FzQJSGlFKUaBVLvWgWR0B05iXgLqlhdX2UKGgGaAloD0MISyNm9jl9ckCUhpRSlGgVS8NoFkdAdOYkM1CPZXV9lChoBmgJaA9DCIxJfy+FkXBAlIaUUpRoFUuYaBZHQHTnPCdjG1h1fZQoaAZoCWgPQwh1IOupVcxxQJSGlFKUaBVLvGgWR0B06W8g6ltTdX2UKGgGaAloD0MI+fTYlgHLNECUhpRSlGgVS35oFkdAdOnGATZg5XV9lChoBmgJaA9DCOW0p+RcD3NAlIaUUpRoFUu/aBZHQHTrCYXwb2l1fZQoaAZoCWgPQwjWOnE5Hu1yQJSGlFKUaBVLymgWR0B07vX9R77bdX2UKGgGaAloD0MIjL0XX3QJcUCUhpRSlGgVS6toFkdAdO8Fj/dZaHV9lChoBmgJaA9DCJrtCn2wCHNAlIaUUpRoFUvFaBZHQHTwgAMlTm51fZQoaAZoCWgPQwg5Y5gTtEFQQJSGlFKUaBVLaWgWR0B08a6BiCrcdX2UKGgGaAloD0MISl8IOa/sc0CUhpRSlGgVS7doFkdAdPJkpqh11XV9lChoBmgJaA9DCGGnWDVIy3JAlIaUUpRoFUvNaBZHQHT0IxUNrj51fZQoaAZoCWgPQwjObcK9cgRzQJSGlFKUaBVLnmgWR0B09HYf4h2XdX2UKGgGaAloD0MIxHx5ATbTc0CUhpRSlGgVS5toFkdAdPVlYEGJN3V9lChoBmgJaA9DCOM1r+psG3NAlIaUUpRoFUvNaBZHQHT2Vd5Y5kt1fZQoaAZoCWgPQwgIWRZMPBtyQJSGlFKUaBVLwGgWR0B092USqU/wdX2UKGgGaAloD0MIy9WPTbIuckCUhpRSlGgVS8ZoFkdAdPjtfG+9J3V9lChoBmgJaA9DCDjb3Jher3BAlIaUUpRoFUuhaBZHQHT5jwUg0TF1fZQoaAZoCWgPQwgArfnx17VxQJSGlFKUaBVLyGgWR0B0+fafzz3AdX2UKGgGaAloD0MIF0flJuqjckCUhpRSlGgVS7ZoFkdAdP06xxDLKXV9lChoBmgJaA9DCCUDQBU3QXNAlIaUUpRoFUvFaBZHQHT9baIvalF1fZQoaAZoCWgPQwiQZ5dvvUFyQJSGlFKUaBVLxmgWR0B1AyZnctXgdX2UKGgGaAloD0MIoBhZMscDc0CUhpRSlGgVS79oFkdAdQPb9ZRsM3V9lChoBmgJaA9DCKZ7ndQXyXFAlIaUUpRoFUuzaBZHQHUDxTKkl/p1fZQoaAZoCWgPQwgNp8zNN8ZyQJSGlFKUaBVLsGgWR0B1BC//NqxkdX2UKGgGaAloD0MIg/jAjv/ac0CUhpRSlGgVS91oFkdAdQV4//vOQnV9lChoBmgJaA9DCLSqJR1lwnBAlIaUUpRoFUunaBZHQHUFaBqbjLl1fZQoaAZoCWgPQwg6z9iXLK1yQJSGlFKUaBVLrGgWR0B1BZLzwtrcdX2UKGgGaAloD0MIeedQhmoEc0CUhpRSlGgVS5loFkdAdQk9CNS62HV9lChoBmgJaA9DCETAIVRpDXFAlIaUUpRoFUu0aBZHQHUJVR+BpYd1fZQoaAZoCWgPQwjay7bTFnVzQJSGlFKUaBVLwGgWR0B1CXnvDxb0dX2UKGgGaAloD0MIQYNNnccNc0CUhpRSlGgVS+VoFkdAdQxEk0JnhHV9lChoBmgJaA9DCAthNZZww3JAlIaUUpRoFUvBaBZHQHUMxiLEUCd1fZQoaAZoCWgPQwgTm49rA5VwQJSGlFKUaBVLn2gWR0B1DSMcZLqVdX2UKGgGaAloD0MITgrzHifNc0CUhpRSlGgVS99oFkdAdQ86xxDLKXV9lChoBmgJaA9DCEq2upwSb3FAlIaUUpRoFUuyaBZHQHUPVc6eXiR1fZQoaAZoCWgPQwgXfnA+tYBwQJSGlFKUaBVLomgWR0B1E0vIwM6SdX2UKGgGaAloD0MIpMFtbaHUcECUhpRSlGgVS6NoFkdAdRQXE61b7nV9lChoBmgJaA9DCFMGDmgpV3FAlIaUUpRoFUu0aBZHQHUWJOSGJvZ1fZQoaAZoCWgPQwjQ7/s3r9dxQJSGlFKUaBVLu2gWR0B1FnQ7cO9WdX2UKGgGaAloD0MIqI/AH76QcUCUhpRSlGgVS7BoFkdAdRb9tMwlB3V9lChoBmgJaA9DCELr4cuEOXJAlIaUUpRoFUvBaBZHQHUYwQL/jsF1fZQoaAZoCWgPQwhJTbuYpotyQJSGlFKUaBVLv2gWR0B1GKnFYMfBdX2UKGgGaAloD0MISWjLuVR4cECUhpRSlGgVS51oFkdAdRlhjvuw5nV9lChoBmgJaA9DCCAJ+3YSPXFAlIaUUpRoFUutaBZHQHUa0OiFj/d1fZQoaAZoCWgPQwgKoBhZcppwQJSGlFKUaBVLpGgWR0B1HRAprk8zdX2UKGgGaAloD0MI8FAU6NN9dECUhpRSlGgVS7RoFkdAdR8+SbH6uXV9lChoBmgJaA9DCG4YBcHj8XNAlIaUUpRoFUvqaBZHQHUhR5s0pEx1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 2532,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.99,
|
LLv2__sb3__ppo__ns=1000000/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f01eba9e314b6e59622ec96855c35d0632df5e176dc7961d3c72c48049d85978
|
3 |
+
size 88057
|
LLv2__sb3__ppo__ns=1000000/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8108e05818c0ba0bce4431a8daaf25cbdb85c8f8657ade5a09bf0111cd66d48
|
3 |
+
size 43201
|
LLv2__sb3__ppo__ns=1000000/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.15.0-
|
2 |
Python: 3.8.10
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu117
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.23.5
|
7 |
Gym: 0.21.0
|
|
|
1 |
+
OS: Linux-5.15.0-56-generic-x86_64-with-glibc2.29 #62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022
|
2 |
Python: 3.8.10
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu117
|
5 |
+
GPU Enabled: True
|
6 |
Numpy: 1.23.5
|
7 |
Gym: 0.21.0
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 280.42 +/- 17.09
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c1cb1f1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c1cb1f280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c1cb1f310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c1cb1f3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f8c1cb1f430>", "forward": "<function ActorCriticPolicy.forward at 0x7f8c1cb1f4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c1cb1f550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8c1cb1f5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c1cb1f670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c1cb1f700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c1cb1f790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8c1cb167e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670620142517385528, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMjy9ob21lL2FsZXhhbmRlci93b3Jrc3BhY2UvcHJvamVjdHMvY291cnNlcy9odWdnaW5nZmFjZS9kZWVwLXJsLWNvdXJzZS91bml0MS8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC+JDy41bK7KZgRvtQ737tgYjc7ddaFvgAAgD8AAAAAzQCcPETBDD5jxIC9v5zYvovOm7z+yGK9AAAAAAAAAAAmRuK9NrZCPzHmJ74kcjW/QsBsvhScA74AAAAAAAAAAM3Kuzychzu8BgBavlYVVL60WcM8KplzPwAAgD8AAIA/gKwBvXHQV7td36M+cdkIvqMxGTzwAVm/AAAAAAAAgD8G/QC+AWPQPq7duTyzbha/C6Rxvj3K3jwAAAAAAAAAADMhFry4v7E/6FASvvJPbb5Ee+O6jP80vQAAAAAAAAAAAKlDPRzIQbx9oSu9S+1dPIjVpz2RGji9AACAPwAAgD8AoeO8e4azuiXHyLv7oAg4u5tiOfs/JrcAAAAAAACAP83Y6zzSFKs/y5unPaZQFL8mr/c9uPbKPAAAAAAAAAAA5nt1Pl+Mtz8LuRU/qaTBvt2HEj860rE+AAAAAAAAAAAANMS7CL+0P4hDG79PB1M9r5LjO6atDD4AAAAAAAAAANpNMz4v5Zo/wAvLPn293b4ebdM+ot6hPgAAAAAAAAAAYMxtvnWxmz/q5iS/8XMyv6L6wL6KeKu+AAAAAAAAAACKAmS+rBGlPj+KKT6Fogy/yoHMvn0x+T0AAAAAAAAAAGYXGr03jCU+HRBNvUM57r7PyCa9prpRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVxg0AAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaeBHNWx2ckCUhpRSlIwBbJRLjowBdJRHQLKTZEYfnwJ1fZQoaAZoCWgPQwhiaHVyxghxQJSGlFKUaBVLmWgWR0Cyk20ug6EKdX2UKGgGaAloD0MIaYtrfGbdcUCUhpRSlGgVS5poFkdAspNt8KG+K3V9lChoBmgJaA9DCH+IDRZOQnBAlIaUUpRoFUujaBZHQLKTdWSU1Q91fZQoaAZoCWgPQwjaGhGMA19yQJSGlFKUaBVLqGgWR0Cyk3jD8+A3dX2UKGgGaAloD0MIrOP4oZJ1dECUhpRSlGgVS6xoFkdAspN7ZoPCmHV9lChoBmgJaA9DCNhEZi4wdHNAlIaUUpRoFUu9aBZHQLKTh8vEjxF1fZQoaAZoCWgPQwjizK/mgCZxQJSGlFKUaBVLw2gWR0Cyk4wlv60qdX2UKGgGaAloD0MInfS+8TU5c0CUhpRSlGgVS8VoFkdAspOOnivPknV9lChoBmgJaA9DCJjaUge5aXFAlIaUUpRoFUvFaBZHQLKTjktmL+B1fZQoaAZoCWgPQwhn170VyUFxQJSGlFKUaBVLxmgWR0Cyk4+CCjDbdX2UKGgGaAloD0MIdo2WA/25ckCUhpRSlGgVS8loFkdAspOQlKK51HV9lChoBmgJaA9DCO7MBMO5R3NAlIaUUpRoFUvKaBZHQLKTkhkRSP51fZQoaAZoCWgPQwgAOWHCKOhxQJSGlFKUaBVLy2gWR0Cyk5Jb6guidX2UKGgGaAloD0MI7iWN0bo5c0CUhpRSlGgVS8toFkdAspOSarmyPnV9lChoBmgJaA9DCGnGouksN3JAlIaUUpRoFU0KAWgWR0Cyk7za9K28dX2UKGgGaAloD0MIfdCzWTUIcECUhpRSlGgVS5hoFkdAspPdS88La3V9lChoBmgJaA9DCAWnPpB8RnFAlIaUUpRoFUuVaBZHQLKT44Ia99N1fZQoaAZoCWgPQwhPWOIBpSRxQJSGlFKUaBVLtWgWR0Cyk+tbxEv1dX2UKGgGaAloD0MIFi8Whkh2cUCUhpRSlGgVS7toFkdAspP4keIVM3V9lChoBmgJaA9DCPceLjmu6HJAlIaUUpRoFUu2aBZHQLKT/5VOsT51fZQoaAZoCWgPQwil+PiErKxwQJSGlFKUaBVLs2gWR0Cyk/+85CF9dX2UKGgGaAloD0MIKCuGq8NScUCUhpRSlGgVS6NoFkdAspQA92X9i3V9lChoBmgJaA9DCMsRMpBn2G5AlIaUUpRoFUuhaBZHQLKUA2fTTfB1fZQoaAZoCWgPQwj7dac7zzhxQJSGlFKUaBVLpGgWR0CylAf6GgzydX2UKGgGaAloD0MICfoLPWJEckCUhpRSlGgVS6RoFkdAspQL7Q9idHV9lChoBmgJaA9DCDf92Y/U43JAlIaUUpRoFUu7aBZHQLKUHi0fHPx1fZQoaAZoCWgPQwgn28Ad6G1zQJSGlFKUaBVLuGgWR0CylB9Cu2ZzdX2UKGgGaAloD0MIX16AfTTdcUCUhpRSlGgVS75oFkdAspQgCHRCyHV9lChoBmgJaA9DCDIiUWjZo3JAlIaUUpRoFUu6aBZHQLKUH7UXpGF1fZQoaAZoCWgPQwjdDDfgMzRzQJSGlFKUaBVLumgWR0CylCGcz67/dX2UKGgGaAloD0MI4Zumz04ocECUhpRSlGgVS5ZoFkdAspQxtALRbHV9lChoBmgJaA9DCNwuNNfpXnFAlIaUUpRoFUuvaBZHQLKUaOskpqh1fZQoaAZoCWgPQwgK2A5G7H1xQJSGlFKUaBVLl2gWR0CylGwrMC9zdX2UKGgGaAloD0MI4syv5sC4c0CUhpRSlGgVS8RoFkdAspRzJkoWpXV9lChoBmgJaA9DCHPXEvKBmXNAlIaUUpRoFUu4aBZHQLKUd4Cp3ot1fZQoaAZoCWgPQwip91ROe2pxQJSGlFKUaBVLoWgWR0CylHvcFhXsdX2UKGgGaAloD0MIhV0UPXBVcUCUhpRSlGgVS6hoFkdAspR/lV94NnV9lChoBmgJaA9DCK4tPC+VEnNAlIaUUpRoFUuXaBZHQLKUf2YOUdJ1fZQoaAZoCWgPQwj6QV2kUDBJQJSGlFKUaBVLimgWR0CylIONLlFMdX2UKGgGaAloD0MIUkfH1cimcECUhpRSlGgVS65oFkdAspSG2Yv38HV9lChoBmgJaA9DCARws3jxMnFAlIaUUpRoFUu/aBZHQLKUli3ocJd1fZQoaAZoCWgPQwiyvKse8CJxQJSGlFKUaBVLpWgWR0CylJXV09yMdX2UKGgGaAloD0MIsYf2sYJkcUCUhpRSlGgVS6hoFkdAspSXBXS0B3V9lChoBmgJaA9DCFyQLcvXwXNAlIaUUpRoFUvOaBZHQLKUmKjSG8F1fZQoaAZoCWgPQwi5isVvSghzQJSGlFKUaBVLuWgWR0CylKJx//eddX2UKGgGaAloD0MImKHxRFCycUCUhpRSlGgVS75oFkdAspSpn13+uXV9lChoBmgJaA9DCNC4cCDkZ3FAlIaUUpRoFUvHaBZHQLKUwsd1dPd1fZQoaAZoCWgPQwhrR3GOOotyQJSGlFKUaBVLj2gWR0CylM/6TGHYdX2UKGgGaAloD0MINnLdlLJ1cUCUhpRSlGgVS6xoFkdAspTpl/Yra3V9lChoBmgJaA9DCELsTKEzFnFAlIaUUpRoFUupaBZHQLKU7pmVZ9x1fZQoaAZoCWgPQwhOnNzv0NhyQJSGlFKUaBVLrWgWR0CylPte+mFbdX2UKGgGaAloD0MIS+fDs0QKc0CUhpRSlGgVS7ZoFkdAspT9hpg1FnV9lChoBmgJaA9DCAmNYOP6w3BAlIaUUpRoFUuuaBZHQLKVCGC7K7t1fZQoaAZoCWgPQwihSPdzyn9xQJSGlFKUaBVLxGgWR0CylRAGOdXldX2UKGgGaAloD0MIoSx8fW02c0CUhpRSlGgVS75oFkdAspUQbp/wzHV9lChoBmgJaA9DCB7GpL8XyXFAlIaUUpRoFUuoaBZHQLKVFQPZqVR1fZQoaAZoCWgPQwhmho2y/rdyQJSGlFKUaBVLy2gWR0CylRV+7UXpdX2UKGgGaAloD0MIbO19qgrucUCUhpRSlGgVS7poFkdAspUhmjCYTnV9lChoBmgJaA9DCF9gViiSz3NAlIaUUpRoFUu9aBZHQLKVIqDK5kN1fZQoaAZoCWgPQwgknBa8aIFwQJSGlFKUaBVLomgWR0CylSKArhBJdX2UKGgGaAloD0MIfT7KiMvockCUhpRSlGgVS8VoFkdAspUqhcqvvHV9lChoBmgJaA9DCAStwJAVJXNAlIaUUpRoFUu8aBZHQLKVLnvlU6x1fZQoaAZoCWgPQwhcOXtnNPFzQJSGlFKUaBVLvWgWR0CylUxdld1MdX2UKGgGaAloD0MI2nIuxRVackCUhpRSlGgVS7poFkdAspVVdUsFuHV9lChoBmgJaA9DCIiE7/1NPnFAlIaUUpRoFUuVaBZHQLKVYjO9nK51fZQoaAZoCWgPQwgdPulEwglxQJSGlFKUaBVLqGgWR0CylWRJRO1wdX2UKGgGaAloD0MIDrvvGF5ScUCUhpRSlGgVS5toFkdAspVo63iJf3V9lChoBmgJaA9DCE3Z6Qf1XXJAlIaUUpRoFUu7aBZHQLKVbhF3IMl1fZQoaAZoCWgPQwhjRnh7UFJxQJSGlFKUaBVLlmgWR0CylXATmGM5dX2UKGgGaAloD0MI9N2tLJFPckCUhpRSlGgVS59oFkdAspV9chTwUnV9lChoBmgJaA9DCIgTmE4rEnNAlIaUUpRoFUuraBZHQLKVi2Ifr8l1fZQoaAZoCWgPQwjedMsOse1yQJSGlFKUaBVLvmgWR0CylZposZpBdX2UKGgGaAloD0MIBcB4Bs0sckCUhpRSlGgVS51oFkdAspWef4AS4HV9lChoBmgJaA9DCJeuYBvxHHNAlIaUUpRoFUviaBZHQLKVsjNY8uB1fZQoaAZoCWgPQwgiADj27K9yQJSGlFKUaBVLy2gWR0CylbPoRqXXdX2UKGgGaAloD0MIu7n42x4IdECUhpRSlGgVS81oFkdAspW2rU9ZBHV9lChoBmgJaA9DCBMPKJvy7nJAlIaUUpRoFUvKaBZHQLKVvaJyhi91fZQoaAZoCWgPQwj2su20dYxyQJSGlFKUaBVLlWgWR0CyldVuFYdRdX2UKGgGaAloD0MIiEm4kMdXcECUhpRSlGgVS61oFkdAspXXiXIEKXV9lChoBmgJaA9DCHALlurClXFAlIaUUpRoFUuRaBZHQLKV1wT/Q0J1fZQoaAZoCWgPQwiB64oZ4VlyQJSGlFKUaBVLu2gWR0Cyldh2jfvXdX2UKGgGaAloD0MIrrg4KndscUCUhpRSlGgVS4xoFkdAspXa3Sa3JHV9lChoBmgJaA9DCJVJDW1ArHJAlIaUUpRoFUu4aBZHQLKV7aVD8cd1fZQoaAZoCWgPQwjzVl2HKllxQJSGlFKUaBVLrWgWR0CylfFGgBcSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2340, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 12, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMjy9ob21lL2FsZXhhbmRlci93b3Jrc3BhY2UvcHJvamVjdHMvY291cnNlcy9odWdnaW5nZmFjZS9kZWVwLXJsLWNvdXJzZS91bml0MS8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.29 #58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f99f7b98e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f99f7b98ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f99f7b98f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f99f7b9f040>", "_build": "<function ActorCriticPolicy._build at 0x7f99f7b9f0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f99f7b9f160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f99f7b9f1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f99f7b9f280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99f7b9f310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f99f7b9f3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99f7b9f430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f99f7b9d060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670621668302956786, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMjy9ob21lL2FsZXhhbmRlci93b3Jrc3BhY2UvcHJvamVjdHMvY291cnNlcy9odWdnaW5nZmFjZS9kZWVwLXJsLWNvdXJzZS91bml0MS8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABnpLwU3I66bkbatInVxS6UmnE4p0IgNAAAgD8AAIA/YPMYvpiP0j0SNOk+YOrBvvBAx722DaE+AAAAAAAAAAAzCZy8ylm0P9NV7b4ssHu9OZYqPAo6ILwAAAAAAAAAAJrBk7yfDsy7Rje9vR36kzyrT/o8pf6jOwAAgD8AAIA/s3o1Pa5HiroF1XS7EZZVtTjE+7q2VY46AAAAAAAAAABaxJg+ScyXP0HtiLyK7Pe+nXk/P1Cz5L0AAAAAAAAAAGZWnTz2uH26WlxFNeJrozAbqxA7PjhPtAAAgD8AAIA/83/UvWR82D2aArc+pW1AvtMsbT6IXlI+AAAAAAAAAABNAXa9fseSPW9fqT5BSza+nqanPSNlez4AAAAAAAAAAAAogjwpwCm69nyfMqNL3DBmYzw7pux7swAAgD8AAIA/Zv7nvOJ0Pj4tZqO83UoVv+WBsr0E+L68AAAAAAAAAAAaHTM9mEL7PaN1uL4uitK+AadLvrahk74AAAAAAAAAADrxTL7IQoc+JmrdPkJ0DL+zBgC9nq92PgAAAAAAAAAAGmokPi4DGT8u4oC+tm9ev0IKRj7HdYW+AAAAAAAAAAAGbg0+05RQP/j0zz1zuRO/HVf6PlqovD0AAAAAAAAAAA3Xzr2dhok/MGLmvi86bb/Ikhy+kPCkvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUFWhgViEc0CUhpRSlIwBbJRLxYwBdJRHQHKCHgtOEdx1fZQoaAZoCWgPQwgT1sbYydByQJSGlFKUaBVLuWgWR0Bygg4o7V8UdX2UKGgGaAloD0MIFmh3SLEJb0CUhpRSlGgVS61oFkdAcoMR+BpYcXV9lChoBmgJaA9DCE8EcR4OSnFAlIaUUpRoFUuZaBZHQHKDsv24/eN1fZQoaAZoCWgPQwicwHRa9/pwQJSGlFKUaBVLsGgWR0Byh5TER8MNdX2UKGgGaAloD0MItTUiGMdycUCUhpRSlGgVS7toFkdAcofnYQJ5V3V9lChoBmgJaA9DCCgK9Ik8V3NAlIaUUpRoFUvLaBZHQHKIw0sOG0x1fZQoaAZoCWgPQwjfMxKhUUN0QJSGlFKUaBVL9GgWR0Byig/gR9PUdX2UKGgGaAloD0MIN+M0RBWjdECUhpRSlGgVS/FoFkdAcorNwzch1XV9lChoBmgJaA9DCIunHmlwR3FAlIaUUpRoFUuwaBZHQHKLeoHcDbJ1fZQoaAZoCWgPQwhZNQhze/FyQJSGlFKUaBVL2WgWR0ByjvuCwr1/dX2UKGgGaAloD0MIdT48S5DfcUCUhpRSlGgVS7RoFkdAco+58Sf16HV9lChoBmgJaA9DCM+6RsvBRHRAlIaUUpRoFUvraBZHQHKQGS+xnnN1fZQoaAZoCWgPQwgwE0VI3T1wQJSGlFKUaBVLk2gWR0B0wCMxXXAedX2UKGgGaAloD0MIwM3ixQK4cECUhpRSlGgVS5xoFkdAdMEbO/tY0XV9lChoBmgJaA9DCJ7r+3BQpnJAlIaUUpRoFUuoaBZHQHTCCwW3z+Z1fZQoaAZoCWgPQwjo9/2bFxhTQJSGlFKUaBVLgGgWR0B0w5kRSP2gdX2UKGgGaAloD0MI5dU5BqR9c0CUhpRSlGgVS8FoFkdAdMQn4fwI+nV9lChoBmgJaA9DCIyEtpwLmHJAlIaUUpRoFUu4aBZHQHTEEoKD0191fZQoaAZoCWgPQwjDLLRz2ptxQJSGlFKUaBVLyWgWR0B0xDmig00ndX2UKGgGaAloD0MInnsPl5w3ckCUhpRSlGgVS4doFkdAdMVdQO4G2XV9lChoBmgJaA9DCHO6LCb20XNAlIaUUpRoFUvOaBZHQHTGR7NSqER1fZQoaAZoCWgPQwh4KuCe54xuQJSGlFKUaBVLm2gWR0B0xzkNnXd1dX2UKGgGaAloD0MISDSBIpaKc0CUhpRSlGgVS75oFkdAdMeOJ+DvmnV9lChoBmgJaA9DCJ1KBoAqgHJAlIaUUpRoFUumaBZHQHTIesDGLk11fZQoaAZoCWgPQwiOyHcptXJzQJSGlFKUaBVLz2gWR0B0yQH5aePJdX2UKGgGaAloD0MIxJj091L6TUCUhpRSlGgVS29oFkdAdMnT238XN3V9lChoBmgJaA9DCOSG3003XnFAlIaUUpRoFUuqaBZHQHTKiA+Y+jd1fZQoaAZoCWgPQwjNVl7yP/k9QJSGlFKUaBVLZWgWR0B0y1X+2mYTdX2UKGgGaAloD0MIu38sRAeNckCUhpRSlGgVS8loFkdAdM5NO/L1VnV9lChoBmgJaA9DCBFTIokeEHFAlIaUUpRoFUuyaBZHQHTOmlEZzgd1fZQoaAZoCWgPQwiO6J51zZlyQJSGlFKUaBVL62gWR0B00S7jDKoydX2UKGgGaAloD0MIFk7S/PFTckCUhpRSlGgVS6JoFkdAdNGl9jPOZHV9lChoBmgJaA9DCE9ZTddTOnNAlIaUUpRoFUvMaBZHQHTTVk1/DtR1fZQoaAZoCWgPQwjPvYdLTsZyQJSGlFKUaBVLqGgWR0B006fPHDJmdX2UKGgGaAloD0MIETXR56M8cUCUhpRSlGgVS5loFkdAdNOCr92ovXV9lChoBmgJaA9DCC7nUlyVJ3JAlIaUUpRoFUu6aBZHQHTUFQhwEQp1fZQoaAZoCWgPQwgxthDkICpzQJSGlFKUaBVLy2gWR0B01a9EkSmJdX2UKGgGaAloD0MIa7sJvumWckCUhpRSlGgVS7ZoFkdAdNdNbkfcOHV9lChoBmgJaA9DCPM8uDtr/XFAlIaUUpRoFUuzaBZHQHTYj6rNnoR1fZQoaAZoCWgPQwiJRQw7jEhxQJSGlFKUaBVLl2gWR0B02IijcmBwdX2UKGgGaAloD0MIYTJVMOozdECUhpRSlGgVS9ZoFkdAdNrNyHVPN3V9lChoBmgJaA9DCFuyKsJN3HJAlIaUUpRoFUuraBZHQHTbfwAlv611fZQoaAZoCWgPQwjTLTvEf5ZzQJSGlFKUaBVL0mgWR0B03WgctGutdX2UKGgGaAloD0MIH4DUJk4AcUCUhpRSlGgVS51oFkdAdN3cM3IdVHV9lChoBmgJaA9DCNLkYgzsDXJAlIaUUpRoFUvpaBZHQHTey4Bmwq11fZQoaAZoCWgPQwgW+8vuyTZxQJSGlFKUaBVLm2gWR0B04FEa2nbZdX2UKGgGaAloD0MIRZ25hwRKckCUhpRSlGgVS71oFkdAdOC10T101nV9lChoBmgJaA9DCHUF24ind3JAlIaUUpRoFUusaBZHQHTiRKHwgDB1fZQoaAZoCWgPQwhszsEzoW9yQJSGlFKUaBVLmWgWR0B05HEuQIUrdX2UKGgGaAloD0MIt9RBXk+jckCUhpRSlGgVS7hoFkdAdOT7SiM5wXV9lChoBmgJaA9DCN/hdmiY5nFAlIaUUpRoFUu5aBZHQHTlY+Ofdyl1fZQoaAZoCWgPQwjlJf+Tv3FzQJSGlFKUaBVLvWgWR0B05iXgLqlhdX2UKGgGaAloD0MISyNm9jl9ckCUhpRSlGgVS8NoFkdAdOYkM1CPZXV9lChoBmgJaA9DCIxJfy+FkXBAlIaUUpRoFUuYaBZHQHTnPCdjG1h1fZQoaAZoCWgPQwh1IOupVcxxQJSGlFKUaBVLvGgWR0B06W8g6ltTdX2UKGgGaAloD0MI+fTYlgHLNECUhpRSlGgVS35oFkdAdOnGATZg5XV9lChoBmgJaA9DCOW0p+RcD3NAlIaUUpRoFUu/aBZHQHTrCYXwb2l1fZQoaAZoCWgPQwjWOnE5Hu1yQJSGlFKUaBVLymgWR0B07vX9R77bdX2UKGgGaAloD0MIjL0XX3QJcUCUhpRSlGgVS6toFkdAdO8Fj/dZaHV9lChoBmgJaA9DCJrtCn2wCHNAlIaUUpRoFUvFaBZHQHTwgAMlTm51fZQoaAZoCWgPQwg5Y5gTtEFQQJSGlFKUaBVLaWgWR0B08a6BiCrcdX2UKGgGaAloD0MISl8IOa/sc0CUhpRSlGgVS7doFkdAdPJkpqh11XV9lChoBmgJaA9DCGGnWDVIy3JAlIaUUpRoFUvNaBZHQHT0IxUNrj51fZQoaAZoCWgPQwjObcK9cgRzQJSGlFKUaBVLnmgWR0B09HYf4h2XdX2UKGgGaAloD0MIxHx5ATbTc0CUhpRSlGgVS5toFkdAdPVlYEGJN3V9lChoBmgJaA9DCOM1r+psG3NAlIaUUpRoFUvNaBZHQHT2Vd5Y5kt1fZQoaAZoCWgPQwgIWRZMPBtyQJSGlFKUaBVLwGgWR0B092USqU/wdX2UKGgGaAloD0MIy9WPTbIuckCUhpRSlGgVS8ZoFkdAdPjtfG+9J3V9lChoBmgJaA9DCDjb3Jher3BAlIaUUpRoFUuhaBZHQHT5jwUg0TF1fZQoaAZoCWgPQwgArfnx17VxQJSGlFKUaBVLyGgWR0B0+fafzz3AdX2UKGgGaAloD0MIF0flJuqjckCUhpRSlGgVS7ZoFkdAdP06xxDLKXV9lChoBmgJaA9DCCUDQBU3QXNAlIaUUpRoFUvFaBZHQHT9baIvalF1fZQoaAZoCWgPQwiQZ5dvvUFyQJSGlFKUaBVLxmgWR0B1AyZnctXgdX2UKGgGaAloD0MIoBhZMscDc0CUhpRSlGgVS79oFkdAdQPb9ZRsM3V9lChoBmgJaA9DCKZ7ndQXyXFAlIaUUpRoFUuzaBZHQHUDxTKkl/p1fZQoaAZoCWgPQwgNp8zNN8ZyQJSGlFKUaBVLsGgWR0B1BC//NqxkdX2UKGgGaAloD0MIg/jAjv/ac0CUhpRSlGgVS91oFkdAdQV4//vOQnV9lChoBmgJaA9DCLSqJR1lwnBAlIaUUpRoFUunaBZHQHUFaBqbjLl1fZQoaAZoCWgPQwg6z9iXLK1yQJSGlFKUaBVLrGgWR0B1BZLzwtrcdX2UKGgGaAloD0MIeedQhmoEc0CUhpRSlGgVS5loFkdAdQk9CNS62HV9lChoBmgJaA9DCETAIVRpDXFAlIaUUpRoFUu0aBZHQHUJVR+BpYd1fZQoaAZoCWgPQwjay7bTFnVzQJSGlFKUaBVLwGgWR0B1CXnvDxb0dX2UKGgGaAloD0MIQYNNnccNc0CUhpRSlGgVS+VoFkdAdQxEk0JnhHV9lChoBmgJaA9DCAthNZZww3JAlIaUUpRoFUvBaBZHQHUMxiLEUCd1fZQoaAZoCWgPQwgTm49rA5VwQJSGlFKUaBVLn2gWR0B1DSMcZLqVdX2UKGgGaAloD0MITgrzHifNc0CUhpRSlGgVS99oFkdAdQ86xxDLKXV9lChoBmgJaA9DCEq2upwSb3FAlIaUUpRoFUuyaBZHQHUPVc6eXiR1fZQoaAZoCWgPQwgXfnA+tYBwQJSGlFKUaBVLomgWR0B1E0vIwM6SdX2UKGgGaAloD0MIpMFtbaHUcECUhpRSlGgVS6NoFkdAdRQXE61b7nV9lChoBmgJaA9DCFMGDmgpV3FAlIaUUpRoFUu0aBZHQHUWJOSGJvZ1fZQoaAZoCWgPQwjQ7/s3r9dxQJSGlFKUaBVLu2gWR0B1FnQ7cO9WdX2UKGgGaAloD0MIqI/AH76QcUCUhpRSlGgVS7BoFkdAdRb9tMwlB3V9lChoBmgJaA9DCELr4cuEOXJAlIaUUpRoFUvBaBZHQHUYwQL/jsF1fZQoaAZoCWgPQwhJTbuYpotyQJSGlFKUaBVLv2gWR0B1GKnFYMfBdX2UKGgGaAloD0MISWjLuVR4cECUhpRSlGgVS51oFkdAdRlhjvuw5nV9lChoBmgJaA9DCCAJ+3YSPXFAlIaUUpRoFUutaBZHQHUa0OiFj/d1fZQoaAZoCWgPQwgKoBhZcppwQJSGlFKUaBVLpGgWR0B1HRAprk8zdX2UKGgGaAloD0MI8FAU6NN9dECUhpRSlGgVS7RoFkdAdR8+SbH6uXV9lChoBmgJaA9DCG4YBcHj8XNAlIaUUpRoFUvqaBZHQHUhR5s0pEx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2532, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 12, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMjy9ob21lL2FsZXhhbmRlci93b3Jrc3BhY2UvcHJvamVjdHMvY291cnNlcy9odWdnaW5nZmFjZS9kZWVwLXJsLWNvdXJzZS91bml0MS8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.29 #62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 280.4181043741951, "std_reward": 17.087135089734026, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T00:40:27.788457"}
|