RichardErkhov commited on
Commit
19d5f27
·
verified ·
1 Parent(s): 0065f07

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +179 -0
README.md ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GGUF quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Octopus-v2 - GGUF
11
+ - Model creator: https://huggingface.co/NexaAIDev/
12
+ - Original model: https://huggingface.co/NexaAIDev/Octopus-v2/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Octopus-v2.Q2_K.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q2_K.gguf) | Q2_K | 1.08GB |
18
+ | [Octopus-v2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.IQ3_XS.gguf) | IQ3_XS | 1.16GB |
19
+ | [Octopus-v2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.IQ3_S.gguf) | IQ3_S | 1.2GB |
20
+ | [Octopus-v2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q3_K_S.gguf) | Q3_K_S | 1.2GB |
21
+ | [Octopus-v2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.IQ3_M.gguf) | IQ3_M | 1.22GB |
22
+ | [Octopus-v2.Q3_K.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q3_K.gguf) | Q3_K | 1.29GB |
23
+ | [Octopus-v2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q3_K_M.gguf) | Q3_K_M | 1.29GB |
24
+ | [Octopus-v2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q3_K_L.gguf) | Q3_K_L | 1.36GB |
25
+ | [Octopus-v2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.IQ4_XS.gguf) | IQ4_XS | 1.4GB |
26
+ | [Octopus-v2.Q4_0.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q4_0.gguf) | Q4_0 | 1.44GB |
27
+ | [Octopus-v2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.IQ4_NL.gguf) | IQ4_NL | 1.45GB |
28
+ | [Octopus-v2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q4_K_S.gguf) | Q4_K_S | 1.45GB |
29
+ | [Octopus-v2.Q4_K.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q4_K.gguf) | Q4_K | 1.52GB |
30
+ | [Octopus-v2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q4_K_M.gguf) | Q4_K_M | 1.52GB |
31
+ | [Octopus-v2.Q4_1.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q4_1.gguf) | Q4_1 | 1.56GB |
32
+ | [Octopus-v2.Q5_0.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q5_0.gguf) | Q5_0 | 1.68GB |
33
+ | [Octopus-v2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q5_K_S.gguf) | Q5_K_S | 1.68GB |
34
+ | [Octopus-v2.Q5_K.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q5_K.gguf) | Q5_K | 1.71GB |
35
+ | [Octopus-v2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q5_K_M.gguf) | Q5_K_M | 1.71GB |
36
+ | [Octopus-v2.Q5_1.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q5_1.gguf) | Q5_1 | 1.79GB |
37
+ | [Octopus-v2.Q6_K.gguf](https://huggingface.co/RichardErkhov/NexaAIDev_-_Octopus-v2-gguf/blob/main/Octopus-v2.Q6_K.gguf) | Q6_K | 1.92GB |
38
+
39
+
40
+
41
+ Original model description:
42
+ ---
43
+ license: apache-2.0
44
+ base_model: google/gemma-2b
45
+ model-index:
46
+ - name: Octopus-V2-2B
47
+ results: []
48
+ tags:
49
+ - function calling
50
+ - on-device language model
51
+ - android
52
+ inference: false
53
+ space: false
54
+ spaces: false
55
+ language:
56
+ - en
57
+ ---
58
+ # Octopus V2: On-device language model for super agent
59
+ <p align="center">
60
+ - <a href="https://www.nexa4ai.com/" target="_blank">Nexa AI Product</a>
61
+ - <a href="https://arxiv.org/abs/2404.01744" target="_blank">ArXiv</a>
62
+ - <a href="https://www.youtube.com/watch?v=jhM0D0OObOw&ab_channel=NexaAI" target="_blank">Video Demo</a>
63
+ </p>
64
+
65
+ <p align="center" width="100%">
66
+ <a><img src="Octopus-logo.jpeg" alt="nexa-octopus" style="width: 40%; min-width: 300px; display: block; margin: auto;"></a>
67
+ </p>
68
+
69
+ ## Introducing Octopus-V2-2B
70
+
71
+ Octopus-V2-2B, an advanced open-source language model with 2 billion parameters, represents Nexa AI's research breakthrough in the application of large language models (LLMs) for function calling, specifically tailored for Android APIs. Unlike Retrieval-Augmented Generation (RAG) methods, which require detailed descriptions of potential function arguments—sometimes needing up to tens of thousands of input tokens—Octopus-V2-2B introduces a unique **functional token** strategy for both its training and inference stages. This approach not only allows it to achieve performance levels comparable to GPT-4 but also significantly enhances its inference speed beyond that of RAG-based methods, making it especially beneficial for edge computing devices.
72
+
73
+ 📱 **On-device Applications**: Octopus-V2-2B is engineered to operate seamlessly on Android devices, extending its utility across a wide range of applications, from Android system management to the orchestration of multiple devices.
74
+
75
+ 🚀 **Inference Speed**: When benchmarked, Octopus-V2-2B demonstrates a remarkable inference speed, outperforming the combination of "Llama7B + RAG solution" by a factor of 36X on a single A100 GPU. Furthermore, compared to GPT-4-turbo (gpt-4-0125-preview), which relies on clusters A100/H100 GPUs, Octopus-V2-2B is 168% faster. This efficiency is attributed to our **functional token** design.
76
+
77
+ 🐙 **Accuracy**: Octopus-V2-2B not only excels in speed but also in accuracy, surpassing the "Llama7B + RAG solution" in function call accuracy by 31%. It achieves a function call accuracy comparable to GPT-4 and RAG + GPT-3.5, with scores ranging between 98% and 100% across benchmark datasets.
78
+
79
+ 💪 **Function Calling Capabilities**: Octopus-V2-2B is capable of generating individual, nested, and parallel function calls across a variety of complex scenarios.
80
+
81
+ ## Example Use Cases
82
+
83
+
84
+ <p align="center" width="100%">
85
+ <a><img src="tool-usage-compressed.png" alt="ondevice" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a>
86
+ </p>
87
+
88
+ You can run the model on a GPU using the following code.
89
+ ```python
90
+ from transformers import AutoTokenizer, GemmaForCausalLM
91
+ import torch
92
+ import time
93
+
94
+ def inference(input_text):
95
+ start_time = time.time()
96
+ input_ids = tokenizer(input_text, return_tensors="pt").to(model.device)
97
+ input_length = input_ids["input_ids"].shape[1]
98
+ outputs = model.generate(
99
+ input_ids=input_ids["input_ids"],
100
+ max_length=1024,
101
+ do_sample=False)
102
+ generated_sequence = outputs[:, input_length:].tolist()
103
+ res = tokenizer.decode(generated_sequence[0])
104
+ end_time = time.time()
105
+ return {"output": res, "latency": end_time - start_time}
106
+
107
+ model_id = "NexaAIDev/Octopus-v2"
108
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
109
+ model = GemmaForCausalLM.from_pretrained(
110
+ model_id, torch_dtype=torch.bfloat16, device_map="auto"
111
+ )
112
+
113
+ input_text = "Take a selfie for me with front camera"
114
+ nexa_query = f"Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: {input_text} \n\nResponse:"
115
+ start_time = time.time()
116
+ print("nexa model result:\n", inference(nexa_query))
117
+ print("latency:", time.time() - start_time," s")
118
+ ```
119
+
120
+ ## Evaluation
121
+
122
+ The benchmark result can be viewed in [this excel](android_benchmark.xlsx), which is manually verified. All the queries in the benchmark test are sampled by Gemini.
123
+
124
+ <p align="center" width="100%">
125
+ <a><img src="latency_plot.jpg" alt="ondevice" style="width: 80%; min-width: 300px; display: block; margin: auto; margin-bottom: 20px;"></a>
126
+ <a><img src="accuracy_plot.jpg" alt="ondevice" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a>
127
+ </p>
128
+
129
+ **Note**: One can notice that the query includes all necessary parameters used for a function. It is expected that query includes all parameters during inference as well.
130
+
131
+ ## Training Data
132
+ We wrote 20 Android API descriptions to used to train the models, see [this file](android_functions.txt) for details. The Android API implementations for our demos, and our training data will be published later. Below is one Android API description example
133
+ ```
134
+ def get_trending_news(category=None, region='US', language='en', max_results=5):
135
+ """
136
+ Fetches trending news articles based on category, region, and language.
137
+
138
+ Parameters:
139
+ - category (str, optional): News category to filter by, by default use None for all categories. Optional to provide.
140
+ - region (str, optional): ISO 3166-1 alpha-2 country code for region-specific news, by default, uses 'US'. Optional to provide.
141
+ - language (str, optional): ISO 639-1 language code for article language, by default uses 'en'. Optional to provide.
142
+ - max_results (int, optional): Maximum number of articles to return, by default, uses 5. Optional to provide.
143
+
144
+ Returns:
145
+ - list[str]: A list of strings, each representing an article. Each string contains the article's heading and URL.
146
+ """
147
+ ```
148
+
149
+
150
+ ## License
151
+ This model was trained on commercially viable data and is under the [Nexa AI community disclaimer](https://www.nexa4ai.com/disclaimer).
152
+
153
+
154
+ ## References
155
+ We thank the Google Gemma team for their amazing models!
156
+ ```
157
+ @misc{gemma-2023-open-models,
158
+ author = {{Gemma Team, Google DeepMind}},
159
+ title = {Gemma: Open Models Based on Gemini Research and Technology},
160
+ url = {https://goo.gle/GemmaReport},
161
+ year = {2023},
162
+ }
163
+ ```
164
+
165
+ ## Citation
166
+ ```
167
+ @misc{chen2024octopus,
168
+ title={Octopus v2: On-device language model for super agent},
169
+ author={Wei Chen and Zhiyuan Li},
170
+ year={2024},
171
+ eprint={2404.01744},
172
+ archivePrefix={arXiv},
173
+ primaryClass={cs.CL}
174
+ }
175
+ ```
176
+
177
+ ## Contact
178
+ Please [contact us](mailto:[email protected]) to reach out for any issues and comments!
179
+