File size: 6,935 Bytes
e2e4c48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Qwen2.5-Math-72B - GGUF
- Model creator: https://huggingface.co/Qwen/
- Original model: https://huggingface.co/Qwen/Qwen2.5-Math-72B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Qwen2.5-Math-72B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/blob/main/Qwen2.5-Math-72B.Q2_K.gguf) | Q2_K | 27.76GB |
| [Qwen2.5-Math-72B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/blob/main/Qwen2.5-Math-72B.IQ3_XS.gguf) | IQ3_XS | 30.59GB |
| [Qwen2.5-Math-72B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/blob/main/Qwen2.5-Math-72B.IQ3_S.gguf) | IQ3_S | 32.12GB |
| [Qwen2.5-Math-72B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/blob/main/Qwen2.5-Math-72B.Q3_K_S.gguf) | Q3_K_S | 32.12GB |
| [Qwen2.5-Math-72B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/blob/main/Qwen2.5-Math-72B.IQ3_M.gguf) | IQ3_M | 33.07GB |
| [Qwen2.5-Math-72B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/blob/main/Qwen2.5-Math-72B.Q3_K.gguf) | Q3_K | 35.11GB |
| [Qwen2.5-Math-72B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/blob/main/Qwen2.5-Math-72B.Q3_K_M.gguf) | Q3_K_M | 35.11GB |
| [Qwen2.5-Math-72B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/blob/main/Qwen2.5-Math-72B.Q3_K_L.gguf) | Q3_K_L | 36.79GB |
| [Qwen2.5-Math-72B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | IQ4_XS | 37.4GB |
| [Qwen2.5-Math-72B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q4_0 | 38.4GB |
| [Qwen2.5-Math-72B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | IQ4_NL | 38.9GB |
| [Qwen2.5-Math-72B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q4_K_S | 40.88GB |
| [Qwen2.5-Math-72B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q4_K | 44.16GB |
| [Qwen2.5-Math-72B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q4_K_M | 44.16GB |
| [Qwen2.5-Math-72B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q4_1 | 42.56GB |
| [Qwen2.5-Math-72B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q5_0 | 46.72GB |
| [Qwen2.5-Math-72B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q5_K_S | 47.85GB |
| [Qwen2.5-Math-72B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q5_K | 50.71GB |
| [Qwen2.5-Math-72B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q5_K_M | 50.71GB |
| [Qwen2.5-Math-72B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q5_1 | 50.88GB |
| [Qwen2.5-Math-72B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q6_K | 59.93GB |
| [Qwen2.5-Math-72B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2.5-Math-72B-gguf/tree/main/) | Q8_0 | 71.96GB |
Original model description:
---
license: other
license_name: qwen
base_model: Qwen/Qwen2.5-72B
license_link: https://huggingface.co/Qwen/Qwen2.5-Math-72B/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
library_name: transformers
---
# Qwen2.5-Math-72B
> [!Warning]
> <div align="center">
> <b>
> 🚨 Qwen2.5-Math mainly supports solving English and Chinese math problems through CoT and TIR. We do not recommend using this series of models for other tasks.
> </b>
> </div>
## Introduction
In August 2024, we released the first series of mathematical LLMs - [Qwen2-Math](https://qwenlm.github.io/blog/qwen2-math/) - of our Qwen family. A month later, we have upgraded it and open-sourced **Qwen2.5-Math** series, including base models **Qwen2.5-Math-1.5B/7B/72B**, instruction-tuned models **Qwen2.5-Math-1.5B/7B/72B-Instruct**, and mathematical reward model **Qwen2.5-Math-RM-72B**.
Unlike Qwen2-Math series which only supports using Chain-of-Thught (CoT) to solve English math problems, Qwen2.5-Math series is expanded to support using both CoT and Tool-integrated Reasoning (TIR) to solve math problems in both Chinese and English. The Qwen2.5-Math series models have achieved significant performance improvements compared to the Qwen2-Math series models on the Chinese and English mathematics benchmarks with CoT.
![](http://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2.5/qwen2.5-math-pipeline.jpeg)
While CoT plays a vital role in enhancing the reasoning capabilities of LLMs, it faces challenges in achieving computational accuracy and handling complex mathematical or algorithmic reasoning tasks, such as finding the roots of a quadratic equation or computing the eigenvalues of a matrix. TIR can further improve the model's proficiency in precise computation, symbolic manipulation, and algorithmic manipulation. Qwen2.5-Math-1.5B/7B/72B-Instruct achieve 79.7, 85.3, and 87.8 respectively on the MATH benchmark using TIR.
## Model Details
For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen2.5-math/) and [GitHub repo](https://github.com/QwenLM/Qwen2.5-Math).
## Requirements
* `transformers>=4.37.0` for Qwen2.5-Math models. The latest version is recommended.
> [!Warning]
> <div align="center">
> <b>
> 🚨 This is a must because <code>transformers</code> integrated Qwen2 codes since <code>4.37.0</code>.
> </b>
> </div>
For requirements on GPU memory and the respective throughput, see similar results of Qwen2 [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Quick Start
> [!Important]
>
> **Qwen2.5-Math-72B-Instruct** is an instruction model for chatting;
>
> **Qwen2.5-Math-72B** is a base model typically used for completion and few-shot inference, serving as a better starting point for fine-tuning.
>
## Citation
If you find our work helpful, feel free to give us a citation.
```
@article{yang2024qwen25mathtechnicalreportmathematical,
title={Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement},
author={An Yang and Beichen Zhang and Binyuan Hui and Bofei Gao and Bowen Yu and Chengpeng Li and Dayiheng Liu and Jianhong Tu and Jingren Zhou and Junyang Lin and Keming Lu and Mingfeng Xue and Runji Lin and Tianyu Liu and Xingzhang Ren and Zhenru Zhang},
journal={arXiv preprint arXiv:2409.12122},
year={2024}
}
```
|