RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
aegolius-acadicus-v1-30b - GGUF
|
11 |
+
- Model creator: https://huggingface.co/ibivibiv/
|
12 |
+
- Original model: https://huggingface.co/ibivibiv/aegolius-acadicus-v1-30b/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [aegolius-acadicus-v1-30b.Q2_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q2_K.gguf) | Q2_K | 10.14GB |
|
18 |
+
| [aegolius-acadicus-v1-30b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ3_XS.gguf) | IQ3_XS | 11.35GB |
|
19 |
+
| [aegolius-acadicus-v1-30b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ3_S.gguf) | IQ3_S | 11.99GB |
|
20 |
+
| [aegolius-acadicus-v1-30b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q3_K_S.gguf) | Q3_K_S | 11.97GB |
|
21 |
+
| [aegolius-acadicus-v1-30b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ3_M.gguf) | IQ3_M | 12.2GB |
|
22 |
+
| [aegolius-acadicus-v1-30b.Q3_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q3_K.gguf) | Q3_K | 13.29GB |
|
23 |
+
| [aegolius-acadicus-v1-30b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q3_K_M.gguf) | Q3_K_M | 13.29GB |
|
24 |
+
| [aegolius-acadicus-v1-30b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q3_K_L.gguf) | Q3_K_L | 14.39GB |
|
25 |
+
| [aegolius-acadicus-v1-30b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ4_XS.gguf) | IQ4_XS | 14.97GB |
|
26 |
+
| [aegolius-acadicus-v1-30b.Q4_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_0.gguf) | Q4_0 | 15.64GB |
|
27 |
+
| [aegolius-acadicus-v1-30b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ4_NL.gguf) | IQ4_NL | 15.79GB |
|
28 |
+
| [aegolius-acadicus-v1-30b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_K_S.gguf) | Q4_K_S | 15.78GB |
|
29 |
+
| [aegolius-acadicus-v1-30b.Q4_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_K.gguf) | Q4_K | 16.79GB |
|
30 |
+
| [aegolius-acadicus-v1-30b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_K_M.gguf) | Q4_K_M | 16.79GB |
|
31 |
+
| [aegolius-acadicus-v1-30b.Q4_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_1.gguf) | Q4_1 | 17.37GB |
|
32 |
+
| [aegolius-acadicus-v1-30b.Q5_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_0.gguf) | Q5_0 | 19.09GB |
|
33 |
+
| [aegolius-acadicus-v1-30b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_K_S.gguf) | Q5_K_S | 19.09GB |
|
34 |
+
| [aegolius-acadicus-v1-30b.Q5_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_K.gguf) | Q5_K | 19.68GB |
|
35 |
+
| [aegolius-acadicus-v1-30b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_K_M.gguf) | Q5_K_M | 19.68GB |
|
36 |
+
| [aegolius-acadicus-v1-30b.Q5_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_1.gguf) | Q5_1 | 20.82GB |
|
37 |
+
| [aegolius-acadicus-v1-30b.Q6_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q6_K.gguf) | Q6_K | 22.76GB |
|
38 |
+
| [aegolius-acadicus-v1-30b.Q8_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q8_0.gguf) | Q8_0 | 29.48GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
language:
|
46 |
+
- en
|
47 |
+
license: llama2
|
48 |
+
tags:
|
49 |
+
- moe
|
50 |
+
- moerge
|
51 |
+
model-index:
|
52 |
+
- name: aegolius-acadicus-30b
|
53 |
+
results:
|
54 |
+
- task:
|
55 |
+
type: text-generation
|
56 |
+
name: Text Generation
|
57 |
+
dataset:
|
58 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
59 |
+
type: ai2_arc
|
60 |
+
config: ARC-Challenge
|
61 |
+
split: test
|
62 |
+
args:
|
63 |
+
num_few_shot: 25
|
64 |
+
metrics:
|
65 |
+
- type: acc_norm
|
66 |
+
value: 72.61
|
67 |
+
name: normalized accuracy
|
68 |
+
source:
|
69 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
|
70 |
+
name: Open LLM Leaderboard
|
71 |
+
- task:
|
72 |
+
type: text-generation
|
73 |
+
name: Text Generation
|
74 |
+
dataset:
|
75 |
+
name: HellaSwag (10-Shot)
|
76 |
+
type: hellaswag
|
77 |
+
split: validation
|
78 |
+
args:
|
79 |
+
num_few_shot: 10
|
80 |
+
metrics:
|
81 |
+
- type: acc_norm
|
82 |
+
value: 88.01
|
83 |
+
name: normalized accuracy
|
84 |
+
source:
|
85 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
|
86 |
+
name: Open LLM Leaderboard
|
87 |
+
- task:
|
88 |
+
type: text-generation
|
89 |
+
name: Text Generation
|
90 |
+
dataset:
|
91 |
+
name: MMLU (5-Shot)
|
92 |
+
type: cais/mmlu
|
93 |
+
config: all
|
94 |
+
split: test
|
95 |
+
args:
|
96 |
+
num_few_shot: 5
|
97 |
+
metrics:
|
98 |
+
- type: acc
|
99 |
+
value: 65.07
|
100 |
+
name: accuracy
|
101 |
+
source:
|
102 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
|
103 |
+
name: Open LLM Leaderboard
|
104 |
+
- task:
|
105 |
+
type: text-generation
|
106 |
+
name: Text Generation
|
107 |
+
dataset:
|
108 |
+
name: TruthfulQA (0-shot)
|
109 |
+
type: truthful_qa
|
110 |
+
config: multiple_choice
|
111 |
+
split: validation
|
112 |
+
args:
|
113 |
+
num_few_shot: 0
|
114 |
+
metrics:
|
115 |
+
- type: mc2
|
116 |
+
value: 67.07
|
117 |
+
source:
|
118 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
|
119 |
+
name: Open LLM Leaderboard
|
120 |
+
- task:
|
121 |
+
type: text-generation
|
122 |
+
name: Text Generation
|
123 |
+
dataset:
|
124 |
+
name: Winogrande (5-shot)
|
125 |
+
type: winogrande
|
126 |
+
config: winogrande_xl
|
127 |
+
split: validation
|
128 |
+
args:
|
129 |
+
num_few_shot: 5
|
130 |
+
metrics:
|
131 |
+
- type: acc
|
132 |
+
value: 84.93
|
133 |
+
name: accuracy
|
134 |
+
source:
|
135 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
|
136 |
+
name: Open LLM Leaderboard
|
137 |
+
- task:
|
138 |
+
type: text-generation
|
139 |
+
name: Text Generation
|
140 |
+
dataset:
|
141 |
+
name: GSM8k (5-shot)
|
142 |
+
type: gsm8k
|
143 |
+
config: main
|
144 |
+
split: test
|
145 |
+
args:
|
146 |
+
num_few_shot: 5
|
147 |
+
metrics:
|
148 |
+
- type: acc
|
149 |
+
value: 70.51
|
150 |
+
name: accuracy
|
151 |
+
source:
|
152 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
|
153 |
+
name: Open LLM Leaderboard
|
154 |
+
---
|
155 |
+
# Aegolius Acadicus 30B
|
156 |
+
|
157 |
+
MOE 4x7b model using the Mixtral branch of the mergekit. NOT A MERGE. It is tagged as an moe and is an moe.
|
158 |
+
|
159 |
+
![img](./aegolius-acadicus.png)
|
160 |
+
|
161 |
+
I like to call this model "The little professor". It is simply a MOE merge of lora merged models across Llama2 and Mistral. I am using this as a test case to move to larger models and get my gate discrimination set correctly. This model is best suited for knowledge related use cases, I did not give it a specific workload target as I did with some of the other models in the "Owl Series".
|
162 |
+
|
163 |
+
This model is merged from the following sources:
|
164 |
+
|
165 |
+
[Westlake-7B](https://huggingface.co/senseable/Westlake-7B)
|
166 |
+
[WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)
|
167 |
+
[openchat-nectar-0.5](https://huggingface.co/andysalerno/openchat-nectar-0.5)
|
168 |
+
[WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2)
|
169 |
+
[WestSeverus-7B-DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO)
|
170 |
+
|
171 |
+
Unless those models are "contaminated" this one is not. This is a proof of concept version of this series and you can find others where I am tuning my own models and using moe mergekit to combine them to make moe models that I can run on lower tier hardware with better results.
|
172 |
+
|
173 |
+
The goal here is to create specialized models that can collaborate and run as one model.
|
174 |
+
|
175 |
+
# Prompting
|
176 |
+
|
177 |
+
## Prompt Template for alpaca style
|
178 |
+
|
179 |
+
```
|
180 |
+
### Instruction:
|
181 |
+
|
182 |
+
<prompt> (without the <>)
|
183 |
+
|
184 |
+
### Response:
|
185 |
+
```
|
186 |
+
|
187 |
+
## Sample Code
|
188 |
+
|
189 |
+
```python
|
190 |
+
import torch
|
191 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
192 |
+
|
193 |
+
torch.set_default_device("cuda")
|
194 |
+
|
195 |
+
model = AutoModelForCausalLM.from_pretrained("ibivibiv/aegolius-acadicus-30b", torch_dtype="auto", device_config='auto')
|
196 |
+
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/aegolius-acadicus-30b")
|
197 |
+
|
198 |
+
inputs = tokenizer("### Instruction: Who would when in an arm wrestling match between Abraham Lincoln and Chuck Norris?\n### Response:\n", return_tensors="pt", return_attention_mask=False)
|
199 |
+
|
200 |
+
outputs = model.generate(**inputs, max_length=200)
|
201 |
+
text = tokenizer.batch_decode(outputs)[0]
|
202 |
+
print(text)
|
203 |
+
```
|
204 |
+
|
205 |
+
# Model Details
|
206 |
+
* **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv)
|
207 |
+
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
|
208 |
+
* **Model type:** **aegolius-acadicus-30b** is an auto-regressive language model moe from Llama 2 transformer architecture models and mistral models.
|
209 |
+
* **Language(s)**: English
|
210 |
+
* **Purpose**: This model is an attempt at an moe model to cover multiple disciplines using finetuned llama 2 and mistral models as base models.
|
211 |
+
|
212 |
+
# Benchmark Scores
|
213 |
+
|
214 |
+
| Test Name | Accuracy |
|
215 |
+
|------------------------------------------------------|----------------------|
|
216 |
+
| all | 0.6566791267920726 |
|
217 |
+
|arc:challenge | 0.7005119453924915 |
|
218 |
+
|hellaswag | 0.7103166699860586 |
|
219 |
+
|hendrycksTest-abstract_algebra | 0.34 |
|
220 |
+
|hendrycksTest-anatomy | 0.6666666666666666 |
|
221 |
+
|hendrycksTest-astronomy | 0.6907894736842105 |
|
222 |
+
|hendrycksTest-business_ethics | 0.65 |
|
223 |
+
|hendrycksTest-clinical_knowledge | 0.7132075471698113 |
|
224 |
+
|hendrycksTest-college_biology | 0.7708333333333334 |
|
225 |
+
|hendrycksTest-college_chemistry | 0.48 |
|
226 |
+
|hendrycksTest-college_computer_science | 0.53 |
|
227 |
+
|hendrycksTest-college_mathematics | 0.33 |
|
228 |
+
|hendrycksTest-college_medicine | 0.6705202312138728 |
|
229 |
+
|hendrycksTest-college_physics | 0.4019607843137255 |
|
230 |
+
|hendrycksTest-computer_security | 0.77 |
|
231 |
+
|hendrycksTest-conceptual_physics | 0.5787234042553191 |
|
232 |
+
|hendrycksTest-econometrics | 0.5 |
|
233 |
+
|hendrycksTest-electrical_engineering | 0.5517241379310345 |
|
234 |
+
|hendrycksTest-elementary_mathematics | 0.42592592592592593 |
|
235 |
+
|hendrycksTest-formal_logic | 0.48412698412698413 |
|
236 |
+
|hendrycksTest-global_facts | 0.37 |
|
237 |
+
|hendrycksTest-high_school_biology | 0.7806451612903226 |
|
238 |
+
|hendrycksTest-high_school_chemistry | 0.4975369458128079 |
|
239 |
+
|hendrycksTest-high_school_computer_science | 0.69 |
|
240 |
+
|hendrycksTest-high_school_european_history | 0.7757575757575758 |
|
241 |
+
|hendrycksTest-high_school_geography | 0.803030303030303 |
|
242 |
+
|hendrycksTest-high_school_government_and_politics | 0.8963730569948186 |
|
243 |
+
|hendrycksTest-high_school_macroeconomics | 0.6641025641025641 |
|
244 |
+
|hendrycksTest-high_school_mathematics | 0.36666666666666664 |
|
245 |
+
|hendrycksTest-high_school_microeconomics | 0.6890756302521008 |
|
246 |
+
|hendrycksTest-high_school_physics | 0.37748344370860926 |
|
247 |
+
|hendrycksTest-high_school_psychology | 0.8403669724770643 |
|
248 |
+
|hendrycksTest-high_school_statistics | 0.5 |
|
249 |
+
|hendrycksTest-high_school_us_history | 0.8480392156862745 |
|
250 |
+
|hendrycksTest-high_school_world_history | 0.8059071729957806 |
|
251 |
+
|hendrycksTest-human_aging | 0.6995515695067265 |
|
252 |
+
|hendrycksTest-human_sexuality | 0.7938931297709924 |
|
253 |
+
|hendrycksTest-international_law | 0.8099173553719008 |
|
254 |
+
|hendrycksTest-jurisprudence | 0.7870370370370371 |
|
255 |
+
|hendrycksTest-logical_fallacies | 0.7484662576687117 |
|
256 |
+
|hendrycksTest-machine_learning | 0.4375 |
|
257 |
+
|hendrycksTest-management | 0.7766990291262136 |
|
258 |
+
|hendrycksTest-marketing | 0.8888888888888888 |
|
259 |
+
|hendrycksTest-medical_genetics | 0.72 |
|
260 |
+
|hendrycksTest-miscellaneous | 0.8314176245210728 |
|
261 |
+
|hendrycksTest-moral_disputes | 0.7398843930635838 |
|
262 |
+
|hendrycksTest-moral_scenarios | 0.4324022346368715 |
|
263 |
+
|hendrycksTest-nutrition | 0.7189542483660131 |
|
264 |
+
|hendrycksTest-philosophy | 0.7041800643086816 |
|
265 |
+
|hendrycksTest-prehistory | 0.7469135802469136 |
|
266 |
+
|hendrycksTest-professional_accounting | 0.5035460992907801 |
|
267 |
+
|hendrycksTest-professional_law | 0.4758800521512386 |
|
268 |
+
|hendrycksTest-professional_medicine | 0.6727941176470589 |
|
269 |
+
|hendrycksTest-professional_psychology | 0.6666666666666666 |
|
270 |
+
|hendrycksTest-public_relations | 0.6727272727272727 |
|
271 |
+
|hendrycksTest-security_studies | 0.7183673469387755 |
|
272 |
+
|hendrycksTest-sociology | 0.8407960199004975 |
|
273 |
+
|hendrycksTest-us_foreign_policy | 0.85 |
|
274 |
+
|hendrycksTest-virology | 0.5542168674698795 |
|
275 |
+
|hendrycksTest-world_religions | 0.8421052631578947 |
|
276 |
+
|truthfulqa:mc | 0.6707176642401714 |
|
277 |
+
|winogrande | 0.8492501973164956 |
|
278 |
+
|gsm8k | 0.7050796057619408 |
|
279 |
+
|
280 |
+
|
281 |
+
## Citations
|
282 |
+
|
283 |
+
```
|
284 |
+
@misc{open-llm-leaderboard,
|
285 |
+
author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
|
286 |
+
title = {Open LLM Leaderboard},
|
287 |
+
year = {2023},
|
288 |
+
publisher = {Hugging Face},
|
289 |
+
howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
|
290 |
+
}
|
291 |
+
```
|
292 |
+
```
|
293 |
+
@software{eval-harness,
|
294 |
+
author = {Gao, Leo and
|
295 |
+
Tow, Jonathan and
|
296 |
+
Biderman, Stella and
|
297 |
+
Black, Sid and
|
298 |
+
DiPofi, Anthony and
|
299 |
+
Foster, Charles and
|
300 |
+
Golding, Laurence and
|
301 |
+
Hsu, Jeffrey and
|
302 |
+
McDonell, Kyle and
|
303 |
+
Muennighoff, Niklas and
|
304 |
+
Phang, Jason and
|
305 |
+
Reynolds, Laria and
|
306 |
+
Tang, Eric and
|
307 |
+
Thite, Anish and
|
308 |
+
Wang, Ben and
|
309 |
+
Wang, Kevin and
|
310 |
+
Zou, Andy},
|
311 |
+
title = {A framework for few-shot language model evaluation},
|
312 |
+
month = sep,
|
313 |
+
year = 2021,
|
314 |
+
publisher = {Zenodo},
|
315 |
+
version = {v0.0.1},
|
316 |
+
doi = {10.5281/zenodo.5371628},
|
317 |
+
url = {https://doi.org/10.5281/zenodo.5371628}
|
318 |
+
}
|
319 |
+
```
|
320 |
+
```
|
321 |
+
@misc{clark2018think,
|
322 |
+
title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
|
323 |
+
author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
|
324 |
+
year={2018},
|
325 |
+
eprint={1803.05457},
|
326 |
+
archivePrefix={arXiv},
|
327 |
+
primaryClass={cs.AI}
|
328 |
+
}
|
329 |
+
```
|
330 |
+
```
|
331 |
+
@misc{zellers2019hellaswag,
|
332 |
+
title={HellaSwag: Can a Machine Really Finish Your Sentence?},
|
333 |
+
author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
|
334 |
+
year={2019},
|
335 |
+
eprint={1905.07830},
|
336 |
+
archivePrefix={arXiv},
|
337 |
+
primaryClass={cs.CL}
|
338 |
+
}
|
339 |
+
```
|
340 |
+
```
|
341 |
+
@misc{hendrycks2021measuring,
|
342 |
+
title={Measuring Massive Multitask Language Understanding},
|
343 |
+
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
|
344 |
+
year={2021},
|
345 |
+
eprint={2009.03300},
|
346 |
+
archivePrefix={arXiv},
|
347 |
+
primaryClass={cs.CY}
|
348 |
+
}
|
349 |
+
```
|
350 |
+
```
|
351 |
+
@misc{lin2022truthfulqa,
|
352 |
+
title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
|
353 |
+
author={Stephanie Lin and Jacob Hilton and Owain Evans},
|
354 |
+
year={2022},
|
355 |
+
eprint={2109.07958},
|
356 |
+
archivePrefix={arXiv},
|
357 |
+
primaryClass={cs.CL}
|
358 |
+
}
|
359 |
+
```
|
360 |
+
```
|
361 |
+
@misc{DBLP:journals/corr/abs-1907-10641,
|
362 |
+
title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
|
363 |
+
author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
|
364 |
+
year={2019},
|
365 |
+
eprint={1907.10641},
|
366 |
+
archivePrefix={arXiv},
|
367 |
+
primaryClass={cs.CL}
|
368 |
+
}
|
369 |
+
```
|
370 |
+
```
|
371 |
+
@misc{DBLP:journals/corr/abs-2110-14168,
|
372 |
+
title={Training Verifiers to Solve Math Word Problems},
|
373 |
+
author={Karl Cobbe and
|
374 |
+
Vineet Kosaraju and
|
375 |
+
Mohammad Bavarian and
|
376 |
+
Mark Chen and
|
377 |
+
Heewoo Jun and
|
378 |
+
Lukasz Kaiser and
|
379 |
+
Matthias Plappert and
|
380 |
+
Jerry Tworek and
|
381 |
+
Jacob Hilton and
|
382 |
+
Reiichiro Nakano and
|
383 |
+
Christopher Hesse and
|
384 |
+
John Schulman},
|
385 |
+
year={2021},
|
386 |
+
eprint={2110.14168},
|
387 |
+
archivePrefix={arXiv},
|
388 |
+
primaryClass={cs.CL}
|
389 |
+
}
|
390 |
+
```
|
391 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
392 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ibivibiv__aegolius-acadicus-30b)
|
393 |
+
|
394 |
+
| Metric |Value|
|
395 |
+
|---------------------------------|----:|
|
396 |
+
|Avg. |74.70|
|
397 |
+
|AI2 Reasoning Challenge (25-Shot)|72.61|
|
398 |
+
|HellaSwag (10-Shot) |88.01|
|
399 |
+
|MMLU (5-Shot) |65.07|
|
400 |
+
|TruthfulQA (0-shot) |67.07|
|
401 |
+
|Winogrande (5-shot) |84.93|
|
402 |
+
|GSM8k (5-shot) |70.51|
|
403 |
+
|
404 |
+
|
405 |
+
|