RichardErkhov commited on
Commit
abf76aa
·
verified ·
1 Parent(s): b1f9753

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +405 -0
README.md ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ aegolius-acadicus-v1-30b - GGUF
11
+ - Model creator: https://huggingface.co/ibivibiv/
12
+ - Original model: https://huggingface.co/ibivibiv/aegolius-acadicus-v1-30b/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [aegolius-acadicus-v1-30b.Q2_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q2_K.gguf) | Q2_K | 10.14GB |
18
+ | [aegolius-acadicus-v1-30b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ3_XS.gguf) | IQ3_XS | 11.35GB |
19
+ | [aegolius-acadicus-v1-30b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ3_S.gguf) | IQ3_S | 11.99GB |
20
+ | [aegolius-acadicus-v1-30b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q3_K_S.gguf) | Q3_K_S | 11.97GB |
21
+ | [aegolius-acadicus-v1-30b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ3_M.gguf) | IQ3_M | 12.2GB |
22
+ | [aegolius-acadicus-v1-30b.Q3_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q3_K.gguf) | Q3_K | 13.29GB |
23
+ | [aegolius-acadicus-v1-30b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q3_K_M.gguf) | Q3_K_M | 13.29GB |
24
+ | [aegolius-acadicus-v1-30b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q3_K_L.gguf) | Q3_K_L | 14.39GB |
25
+ | [aegolius-acadicus-v1-30b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ4_XS.gguf) | IQ4_XS | 14.97GB |
26
+ | [aegolius-acadicus-v1-30b.Q4_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_0.gguf) | Q4_0 | 15.64GB |
27
+ | [aegolius-acadicus-v1-30b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.IQ4_NL.gguf) | IQ4_NL | 15.79GB |
28
+ | [aegolius-acadicus-v1-30b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_K_S.gguf) | Q4_K_S | 15.78GB |
29
+ | [aegolius-acadicus-v1-30b.Q4_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_K.gguf) | Q4_K | 16.79GB |
30
+ | [aegolius-acadicus-v1-30b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_K_M.gguf) | Q4_K_M | 16.79GB |
31
+ | [aegolius-acadicus-v1-30b.Q4_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q4_1.gguf) | Q4_1 | 17.37GB |
32
+ | [aegolius-acadicus-v1-30b.Q5_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_0.gguf) | Q5_0 | 19.09GB |
33
+ | [aegolius-acadicus-v1-30b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_K_S.gguf) | Q5_K_S | 19.09GB |
34
+ | [aegolius-acadicus-v1-30b.Q5_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_K.gguf) | Q5_K | 19.68GB |
35
+ | [aegolius-acadicus-v1-30b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_K_M.gguf) | Q5_K_M | 19.68GB |
36
+ | [aegolius-acadicus-v1-30b.Q5_1.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q5_1.gguf) | Q5_1 | 20.82GB |
37
+ | [aegolius-acadicus-v1-30b.Q6_K.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q6_K.gguf) | Q6_K | 22.76GB |
38
+ | [aegolius-acadicus-v1-30b.Q8_0.gguf](https://huggingface.co/RichardErkhov/ibivibiv_-_aegolius-acadicus-v1-30b-gguf/blob/main/aegolius-acadicus-v1-30b.Q8_0.gguf) | Q8_0 | 29.48GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ language:
46
+ - en
47
+ license: llama2
48
+ tags:
49
+ - moe
50
+ - moerge
51
+ model-index:
52
+ - name: aegolius-acadicus-30b
53
+ results:
54
+ - task:
55
+ type: text-generation
56
+ name: Text Generation
57
+ dataset:
58
+ name: AI2 Reasoning Challenge (25-Shot)
59
+ type: ai2_arc
60
+ config: ARC-Challenge
61
+ split: test
62
+ args:
63
+ num_few_shot: 25
64
+ metrics:
65
+ - type: acc_norm
66
+ value: 72.61
67
+ name: normalized accuracy
68
+ source:
69
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
70
+ name: Open LLM Leaderboard
71
+ - task:
72
+ type: text-generation
73
+ name: Text Generation
74
+ dataset:
75
+ name: HellaSwag (10-Shot)
76
+ type: hellaswag
77
+ split: validation
78
+ args:
79
+ num_few_shot: 10
80
+ metrics:
81
+ - type: acc_norm
82
+ value: 88.01
83
+ name: normalized accuracy
84
+ source:
85
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
86
+ name: Open LLM Leaderboard
87
+ - task:
88
+ type: text-generation
89
+ name: Text Generation
90
+ dataset:
91
+ name: MMLU (5-Shot)
92
+ type: cais/mmlu
93
+ config: all
94
+ split: test
95
+ args:
96
+ num_few_shot: 5
97
+ metrics:
98
+ - type: acc
99
+ value: 65.07
100
+ name: accuracy
101
+ source:
102
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
103
+ name: Open LLM Leaderboard
104
+ - task:
105
+ type: text-generation
106
+ name: Text Generation
107
+ dataset:
108
+ name: TruthfulQA (0-shot)
109
+ type: truthful_qa
110
+ config: multiple_choice
111
+ split: validation
112
+ args:
113
+ num_few_shot: 0
114
+ metrics:
115
+ - type: mc2
116
+ value: 67.07
117
+ source:
118
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
119
+ name: Open LLM Leaderboard
120
+ - task:
121
+ type: text-generation
122
+ name: Text Generation
123
+ dataset:
124
+ name: Winogrande (5-shot)
125
+ type: winogrande
126
+ config: winogrande_xl
127
+ split: validation
128
+ args:
129
+ num_few_shot: 5
130
+ metrics:
131
+ - type: acc
132
+ value: 84.93
133
+ name: accuracy
134
+ source:
135
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
136
+ name: Open LLM Leaderboard
137
+ - task:
138
+ type: text-generation
139
+ name: Text Generation
140
+ dataset:
141
+ name: GSM8k (5-shot)
142
+ type: gsm8k
143
+ config: main
144
+ split: test
145
+ args:
146
+ num_few_shot: 5
147
+ metrics:
148
+ - type: acc
149
+ value: 70.51
150
+ name: accuracy
151
+ source:
152
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-30b
153
+ name: Open LLM Leaderboard
154
+ ---
155
+ # Aegolius Acadicus 30B
156
+
157
+ MOE 4x7b model using the Mixtral branch of the mergekit. NOT A MERGE. It is tagged as an moe and is an moe.
158
+
159
+ ![img](./aegolius-acadicus.png)
160
+
161
+ I like to call this model "The little professor". It is simply a MOE merge of lora merged models across Llama2 and Mistral. I am using this as a test case to move to larger models and get my gate discrimination set correctly. This model is best suited for knowledge related use cases, I did not give it a specific workload target as I did with some of the other models in the "Owl Series".
162
+
163
+ This model is merged from the following sources:
164
+
165
+ [Westlake-7B](https://huggingface.co/senseable/Westlake-7B)
166
+ [WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)
167
+ [openchat-nectar-0.5](https://huggingface.co/andysalerno/openchat-nectar-0.5)
168
+ [WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2)
169
+ [WestSeverus-7B-DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO)
170
+
171
+ Unless those models are "contaminated" this one is not. This is a proof of concept version of this series and you can find others where I am tuning my own models and using moe mergekit to combine them to make moe models that I can run on lower tier hardware with better results.
172
+
173
+ The goal here is to create specialized models that can collaborate and run as one model.
174
+
175
+ # Prompting
176
+
177
+ ## Prompt Template for alpaca style
178
+
179
+ ```
180
+ ### Instruction:
181
+
182
+ <prompt> (without the <>)
183
+
184
+ ### Response:
185
+ ```
186
+
187
+ ## Sample Code
188
+
189
+ ```python
190
+ import torch
191
+ from transformers import AutoModelForCausalLM, AutoTokenizer
192
+
193
+ torch.set_default_device("cuda")
194
+
195
+ model = AutoModelForCausalLM.from_pretrained("ibivibiv/aegolius-acadicus-30b", torch_dtype="auto", device_config='auto')
196
+ tokenizer = AutoTokenizer.from_pretrained("ibivibiv/aegolius-acadicus-30b")
197
+
198
+ inputs = tokenizer("### Instruction: Who would when in an arm wrestling match between Abraham Lincoln and Chuck Norris?\n### Response:\n", return_tensors="pt", return_attention_mask=False)
199
+
200
+ outputs = model.generate(**inputs, max_length=200)
201
+ text = tokenizer.batch_decode(outputs)[0]
202
+ print(text)
203
+ ```
204
+
205
+ # Model Details
206
+ * **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv)
207
+ * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
208
+ * **Model type:** **aegolius-acadicus-30b** is an auto-regressive language model moe from Llama 2 transformer architecture models and mistral models.
209
+ * **Language(s)**: English
210
+ * **Purpose**: This model is an attempt at an moe model to cover multiple disciplines using finetuned llama 2 and mistral models as base models.
211
+
212
+ # Benchmark Scores
213
+
214
+ | Test Name | Accuracy |
215
+ |------------------------------------------------------|----------------------|
216
+ | all | 0.6566791267920726 |
217
+ |arc:challenge | 0.7005119453924915 |
218
+ |hellaswag | 0.7103166699860586 |
219
+ |hendrycksTest-abstract_algebra | 0.34 |
220
+ |hendrycksTest-anatomy | 0.6666666666666666 |
221
+ |hendrycksTest-astronomy | 0.6907894736842105 |
222
+ |hendrycksTest-business_ethics | 0.65 |
223
+ |hendrycksTest-clinical_knowledge | 0.7132075471698113 |
224
+ |hendrycksTest-college_biology | 0.7708333333333334 |
225
+ |hendrycksTest-college_chemistry | 0.48 |
226
+ |hendrycksTest-college_computer_science | 0.53 |
227
+ |hendrycksTest-college_mathematics | 0.33 |
228
+ |hendrycksTest-college_medicine | 0.6705202312138728 |
229
+ |hendrycksTest-college_physics | 0.4019607843137255 |
230
+ |hendrycksTest-computer_security | 0.77 |
231
+ |hendrycksTest-conceptual_physics | 0.5787234042553191 |
232
+ |hendrycksTest-econometrics | 0.5 |
233
+ |hendrycksTest-electrical_engineering | 0.5517241379310345 |
234
+ |hendrycksTest-elementary_mathematics | 0.42592592592592593 |
235
+ |hendrycksTest-formal_logic | 0.48412698412698413 |
236
+ |hendrycksTest-global_facts | 0.37 |
237
+ |hendrycksTest-high_school_biology | 0.7806451612903226 |
238
+ |hendrycksTest-high_school_chemistry | 0.4975369458128079 |
239
+ |hendrycksTest-high_school_computer_science | 0.69 |
240
+ |hendrycksTest-high_school_european_history | 0.7757575757575758 |
241
+ |hendrycksTest-high_school_geography | 0.803030303030303 |
242
+ |hendrycksTest-high_school_government_and_politics | 0.8963730569948186 |
243
+ |hendrycksTest-high_school_macroeconomics | 0.6641025641025641 |
244
+ |hendrycksTest-high_school_mathematics | 0.36666666666666664 |
245
+ |hendrycksTest-high_school_microeconomics | 0.6890756302521008 |
246
+ |hendrycksTest-high_school_physics | 0.37748344370860926 |
247
+ |hendrycksTest-high_school_psychology | 0.8403669724770643 |
248
+ |hendrycksTest-high_school_statistics | 0.5 |
249
+ |hendrycksTest-high_school_us_history | 0.8480392156862745 |
250
+ |hendrycksTest-high_school_world_history | 0.8059071729957806 |
251
+ |hendrycksTest-human_aging | 0.6995515695067265 |
252
+ |hendrycksTest-human_sexuality | 0.7938931297709924 |
253
+ |hendrycksTest-international_law | 0.8099173553719008 |
254
+ |hendrycksTest-jurisprudence | 0.7870370370370371 |
255
+ |hendrycksTest-logical_fallacies | 0.7484662576687117 |
256
+ |hendrycksTest-machine_learning | 0.4375 |
257
+ |hendrycksTest-management | 0.7766990291262136 |
258
+ |hendrycksTest-marketing | 0.8888888888888888 |
259
+ |hendrycksTest-medical_genetics | 0.72 |
260
+ |hendrycksTest-miscellaneous | 0.8314176245210728 |
261
+ |hendrycksTest-moral_disputes | 0.7398843930635838 |
262
+ |hendrycksTest-moral_scenarios | 0.4324022346368715 |
263
+ |hendrycksTest-nutrition | 0.7189542483660131 |
264
+ |hendrycksTest-philosophy | 0.7041800643086816 |
265
+ |hendrycksTest-prehistory | 0.7469135802469136 |
266
+ |hendrycksTest-professional_accounting | 0.5035460992907801 |
267
+ |hendrycksTest-professional_law | 0.4758800521512386 |
268
+ |hendrycksTest-professional_medicine | 0.6727941176470589 |
269
+ |hendrycksTest-professional_psychology | 0.6666666666666666 |
270
+ |hendrycksTest-public_relations | 0.6727272727272727 |
271
+ |hendrycksTest-security_studies | 0.7183673469387755 |
272
+ |hendrycksTest-sociology | 0.8407960199004975 |
273
+ |hendrycksTest-us_foreign_policy | 0.85 |
274
+ |hendrycksTest-virology | 0.5542168674698795 |
275
+ |hendrycksTest-world_religions | 0.8421052631578947 |
276
+ |truthfulqa:mc | 0.6707176642401714 |
277
+ |winogrande | 0.8492501973164956 |
278
+ |gsm8k | 0.7050796057619408 |
279
+
280
+
281
+ ## Citations
282
+
283
+ ```
284
+ @misc{open-llm-leaderboard,
285
+ author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
286
+ title = {Open LLM Leaderboard},
287
+ year = {2023},
288
+ publisher = {Hugging Face},
289
+ howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
290
+ }
291
+ ```
292
+ ```
293
+ @software{eval-harness,
294
+ author = {Gao, Leo and
295
+ Tow, Jonathan and
296
+ Biderman, Stella and
297
+ Black, Sid and
298
+ DiPofi, Anthony and
299
+ Foster, Charles and
300
+ Golding, Laurence and
301
+ Hsu, Jeffrey and
302
+ McDonell, Kyle and
303
+ Muennighoff, Niklas and
304
+ Phang, Jason and
305
+ Reynolds, Laria and
306
+ Tang, Eric and
307
+ Thite, Anish and
308
+ Wang, Ben and
309
+ Wang, Kevin and
310
+ Zou, Andy},
311
+ title = {A framework for few-shot language model evaluation},
312
+ month = sep,
313
+ year = 2021,
314
+ publisher = {Zenodo},
315
+ version = {v0.0.1},
316
+ doi = {10.5281/zenodo.5371628},
317
+ url = {https://doi.org/10.5281/zenodo.5371628}
318
+ }
319
+ ```
320
+ ```
321
+ @misc{clark2018think,
322
+ title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
323
+ author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
324
+ year={2018},
325
+ eprint={1803.05457},
326
+ archivePrefix={arXiv},
327
+ primaryClass={cs.AI}
328
+ }
329
+ ```
330
+ ```
331
+ @misc{zellers2019hellaswag,
332
+ title={HellaSwag: Can a Machine Really Finish Your Sentence?},
333
+ author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
334
+ year={2019},
335
+ eprint={1905.07830},
336
+ archivePrefix={arXiv},
337
+ primaryClass={cs.CL}
338
+ }
339
+ ```
340
+ ```
341
+ @misc{hendrycks2021measuring,
342
+ title={Measuring Massive Multitask Language Understanding},
343
+ author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
344
+ year={2021},
345
+ eprint={2009.03300},
346
+ archivePrefix={arXiv},
347
+ primaryClass={cs.CY}
348
+ }
349
+ ```
350
+ ```
351
+ @misc{lin2022truthfulqa,
352
+ title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
353
+ author={Stephanie Lin and Jacob Hilton and Owain Evans},
354
+ year={2022},
355
+ eprint={2109.07958},
356
+ archivePrefix={arXiv},
357
+ primaryClass={cs.CL}
358
+ }
359
+ ```
360
+ ```
361
+ @misc{DBLP:journals/corr/abs-1907-10641,
362
+ title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
363
+ author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
364
+ year={2019},
365
+ eprint={1907.10641},
366
+ archivePrefix={arXiv},
367
+ primaryClass={cs.CL}
368
+ }
369
+ ```
370
+ ```
371
+ @misc{DBLP:journals/corr/abs-2110-14168,
372
+ title={Training Verifiers to Solve Math Word Problems},
373
+ author={Karl Cobbe and
374
+ Vineet Kosaraju and
375
+ Mohammad Bavarian and
376
+ Mark Chen and
377
+ Heewoo Jun and
378
+ Lukasz Kaiser and
379
+ Matthias Plappert and
380
+ Jerry Tworek and
381
+ Jacob Hilton and
382
+ Reiichiro Nakano and
383
+ Christopher Hesse and
384
+ John Schulman},
385
+ year={2021},
386
+ eprint={2110.14168},
387
+ archivePrefix={arXiv},
388
+ primaryClass={cs.CL}
389
+ }
390
+ ```
391
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
392
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ibivibiv__aegolius-acadicus-30b)
393
+
394
+ | Metric |Value|
395
+ |---------------------------------|----:|
396
+ |Avg. |74.70|
397
+ |AI2 Reasoning Challenge (25-Shot)|72.61|
398
+ |HellaSwag (10-Shot) |88.01|
399
+ |MMLU (5-Shot) |65.07|
400
+ |TruthfulQA (0-shot) |67.07|
401
+ |Winogrande (5-shot) |84.93|
402
+ |GSM8k (5-shot) |70.51|
403
+
404
+
405
+