uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
activation-beacon-llama2-7b-chat - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/namespace-Pt/
|
12 |
+
- Original model: https://huggingface.co/namespace-Pt/activation-beacon-llama2-7b-chat/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: mit
|
20 |
+
datasets:
|
21 |
+
- togethercomputer/RedPajama-Data-1T-Sample
|
22 |
+
- Yukang/LongAlpaca-12k
|
23 |
+
pipeline_tag: text-generation
|
24 |
+
---
|
25 |
+
<div align="center">
|
26 |
+
<h1>Soaring from 4K to 400K: Extending LLM's Context with Activation Beacon</h1>
|
27 |
+
|
28 |
+
[<a href="https://arxiv.org/abs/2401.03462">Paper</a>] [<a href="https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon">Github</a>]
|
29 |
+
|
30 |
+
<img src="imgs/impress.png" width="80%" class="center">
|
31 |
+
</div>
|
32 |
+
|
33 |
+
We introduce Activation Beacon, an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM by **x100** times. Currently we only apply activation beacon to [Llama-2-chat-7b](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf). More LLMs will be supported in the future.
|
34 |
+
|
35 |
+
## Features
|
36 |
+
- **Effectiveness**
|
37 |
+
- significantly improves the performance of Llama-2 on long-context generation (language modeling) and long-context understanding (e.g. long-document QA).
|
38 |
+
- **Efficiency**
|
39 |
+
- low memory usage; low inference latency (compeitive against FlashAttention2); inference latency increases linearly with the input length.
|
40 |
+
- **Compatibility**
|
41 |
+
- preserve the short-context capability of Llama-2;
|
42 |
+
- can be combined with context window extension techniques for futher context extension (e.g. 1M with NTK-Aware);
|
43 |
+
- can be combined with retrieval for higher memory accuracy (*ongoing*).
|
44 |
+
- **Low-Cost Training**
|
45 |
+
- train with 80000 texts within 9 hours;
|
46 |
+
- most training samples are shorter than 4096.
|
47 |
+
|
48 |
+
## Environment
|
49 |
+
The main dependencies are:
|
50 |
+
```
|
51 |
+
pytorch==2.1.2 transformers==4.36.1 accelerate==0.25.0 datasets==2.14.7 numpy==1.26.2 flash-attn==2.4.2
|
52 |
+
```
|
53 |
+
|
54 |
+
## Usage
|
55 |
+
```python
|
56 |
+
import json
|
57 |
+
import torch
|
58 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
59 |
+
|
60 |
+
model_id = "namespace-Pt/activation-beacon-llama2-7b-chat"
|
61 |
+
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
63 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
64 |
+
|
65 |
+
model = model.cuda().eval()
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
# short context
|
69 |
+
text = "Tell me about yourself."
|
70 |
+
inputs = tokenizer(text, return_tensors="pt").to("cuda")
|
71 |
+
outputs = model.generate(**inputs, max_new_tokens=20)
|
72 |
+
print(f"Input Length: {inputs['input_ids'].shape[1]}")
|
73 |
+
print(f"Output: {tokenizer.decode(outputs[0], skip_special_tokens=True)}")
|
74 |
+
|
75 |
+
# reset memory before new generation task
|
76 |
+
model.memory.reset()
|
77 |
+
|
78 |
+
# long context
|
79 |
+
with open("data/toy/narrativeqa.json", encoding="utf-8") as f:
|
80 |
+
example = json.load(f)
|
81 |
+
inputs = tokenizer(example["context"], return_tensors="pt").to("cuda")
|
82 |
+
outputs = model.generate(**inputs, do_sample=False, top_p=1, temperature=1, max_new_tokens=20)[:, inputs["input_ids"].shape[1]:]
|
83 |
+
print("*"*20)
|
84 |
+
print(f"Input Length: {inputs['input_ids'].shape[1]}")
|
85 |
+
print(f"Answer: {example['answer']}")
|
86 |
+
print(f"Prediction: {tokenizer.decode(outputs[0], skip_special_tokens=True)}")
|
87 |
+
```
|
88 |
+
**NOTE**: It's okay to see warnings like `This is a friendly reminder - the current text generation call will exceed the model's predefined maximum length (4096). Depending on the model, you may observe exceptions, performance degradation, or nothing at all.` Just ignore it.
|
89 |
+
|
90 |
+
## Training
|
91 |
+
*coming soon*
|
92 |
+
|
93 |
+
## Evaluation
|
94 |
+
See [evaluation section](https://github.com/FlagOpen/FlagEmbedding/blob/master/Long_LLM/activation_beacon/docs/evaluation.md).
|
95 |
+
|
96 |
+
## Citation
|
97 |
+
If you find this model useful, please give us a like ❤️.
|
98 |
+
|
99 |
+
To cite our work:
|
100 |
+
```
|
101 |
+
@misc{zhang2024soaring,
|
102 |
+
title={Soaring from 4K to 400K: Extending LLM's Context with Activation Beacon},
|
103 |
+
author={Peitian Zhang and Zheng Liu and Shitao Xiao and Ninglu Shao and Qiwei Ye and Zhicheng Dou},
|
104 |
+
year={2024},
|
105 |
+
eprint={2401.03462},
|
106 |
+
archivePrefix={arXiv},
|
107 |
+
primaryClass={cs.CL}
|
108 |
+
}
|
109 |
+
```
|
110 |
+
|