File size: 5,811 Bytes
d7fa6a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Aira-2-1B1 - bnb 4bits
- Model creator: https://huggingface.co/nicholasKluge/
- Original model: https://huggingface.co/nicholasKluge/Aira-2-1B1/
Original model description:
---
license: apache-2.0
datasets:
- nicholasKluge/instruct-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
pipeline_tag: text-generation
widget:
- text: "Can you explain what is Machine Learning?<|endofinstruction|>"
example_title: Machine Learning
- text: "Do you know anything about virtue ethics?<|endofinstruction|>"
example_title: Ethics
- text: "How can I make my girlfriend happy?<|endofinstruction|>"
example_title: Advise
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 30
top_p: 0.3
max_new_tokens: 200
length_penalty: 0.3
early_stopping: true
co2_eq_emissions:
emissions: 1710
source: CodeCarbon
training_type: fine-tuning
geographical_location: Singapore
hardware_used: NVIDIA A100-SXM4-40GB
---
# Aira-2-1B1
Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-1B1 is an instruction-tuned model based on [TinyLlama-1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).
## Details
- **Size:** 1,261,545,472 parameters
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
- **Language:** English
- **Number of Epochs:** 3
- **Batch size:** 4
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 1.71 KgCO2 (Singapore)
- **Total Energy Consumption:** 3.51 kWh
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
## Usage
Three special tokens are used to mark the user side of the interaction and the model's response:
`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>`
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-1B1')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-1B1')
aira.eval()
aira.to(device)
question = input("Enter your question: ")
inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
add_special_tokens=False,
return_tensors="pt").to(device)
responses = aira.generate(**inputs, num_return_sequences=2)
print(f"Question: 👤 {question}\n")
for i, response in enumerate(responses):
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```
The model will output something like:
```markdown
>>>Question: 👤 What is the capital of Brazil?
>>>Response 1: 🤖 The capital of Brazil is Brasília.
>>>Response 2: 🤖 The capital of Brazil is Brasília.
```
## Limitations
- **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.
- **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.
- **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.
## Evaluation
| Model | Average | [ARC](https://arxiv.org/abs/1803.05457) | [TruthfulQA](https://arxiv.org/abs/2109.07958) | [ToxiGen](https://arxiv.org/abs/2203.09509) |
|---------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------|---------------------------------------------|
| [Aira-2-1B1](https://huggingface.co/nicholasKluge/Aira-2-1B1) | **42.55** | 25.26 | **50.81** | **51.59** |
| TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T | 37.52 | **30.89** | 39.55 | 42.13 |
* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)).
## Cite as 🤗
```latex
@misc{nicholas22aira,
doi = {10.5281/zenodo.6989727},
url = {https://github.com/Nkluge-correa/Aira},
author = {Nicholas Kluge Corrêa},
title = {Aira},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
}
@phdthesis{kluge2024dynamic,
title={Dynamic Normativity},
author={Kluge Corr{\^e}a, Nicholas},
year={2024},
school={Universit{\"a}ts-und Landesbibliothek Bonn}
}
```
## License
Aira-2-1B1 is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.
|