RichardErkhov commited on
Commit
83913d8
·
verified ·
1 Parent(s): 20b4cbe

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +118 -0
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ opt-350m-magicprompt-SD - AWQ
11
+ - Model creator: https://huggingface.co/pszemraj/
12
+ - Original model: https://huggingface.co/pszemraj/opt-350m-magicprompt-SD/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: other
20
+ tags:
21
+ - generated_from_trainer
22
+ - stable diffusion
23
+ - diffusion
24
+ - text2image
25
+ - prompt augment
26
+ - prompt engineering
27
+ datasets:
28
+ - Gustavosta/Stable-Diffusion-Prompts
29
+ widget:
30
+ - text: morning sun over Jakarta
31
+ example_title: morning sun
32
+ - text: 'WARNING: pip is'
33
+ example_title: pip
34
+ - text: sentient cheese
35
+ example_title: sentient cheese
36
+ - text: cheeps are
37
+ example_title: cheeps
38
+ - text: avocado armchair
39
+ example_title: creative prompt
40
+ - text: Landscape of
41
+ example_title: landscape
42
+ parameters:
43
+ min_length: 16
44
+ max_length: 96
45
+ no_repeat_ngram_size: 1
46
+ do_sample: true
47
+ base_model: facebook/opt-350m
48
+ model-index:
49
+ - name: opt-350m-magicprompt-SD
50
+ results: []
51
+ ---
52
+
53
+
54
+ # opt-350m-magicprompt-SD
55
+
56
+ Generate/augment your prompt, stable diffusion style.
57
+
58
+ This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the Gustavosta/Stable-Diffusion-Prompts dataset.
59
+ It achieves the following results on the evaluation set:
60
+ - Loss: 1.2987
61
+ - eval_steps_per_second = 16.623
62
+ - perplexity = 3.6644
63
+
64
+ ## example
65
+
66
+ ![jakarta](https://i.imgur.com/TP3HQOA.png)
67
+
68
+ output (_on DALL-E 2, but as words are words, works anywhere_)
69
+
70
+ ![dalle2-jakarta](https://i.ibb.co/BKVxwmJ/DALL-E-2022-11-09-12-37-56-morning-sun-over-Jakarta-by-Simon-St-lenhag-and-Gaston-Bussiere-Matte-pai.png)
71
+
72
+ ## Training and evaluation data
73
+
74
+ refer to the `Gustavosta/Stable-Diffusion-Prompts` dataset.
75
+
76
+ ## Training procedure
77
+
78
+ ### Training hyperparameters
79
+
80
+ The following hyperparameters were used during training:
81
+ - learning_rate: 0.0001
82
+ - train_batch_size: 8
83
+ - eval_batch_size: 2
84
+ - seed: 42
85
+ - distributed_type: multi-GPU
86
+ - num_devices: 2
87
+ - gradient_accumulation_steps: 32
88
+ - total_train_batch_size: 512
89
+ - total_eval_batch_size: 4
90
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
91
+ - lr_scheduler_type: cosine
92
+ - lr_scheduler_warmup_ratio: 0.05
93
+ - num_epochs: 10.0
94
+
95
+ ### Training results
96
+
97
+ | Training Loss | Epoch | Step | Validation Loss |
98
+ |:-------------:|:-----:|:----:|:---------------:|
99
+ | 2.8568 | 0.95 | 16 | 2.5937 |
100
+ | 2.2487 | 1.95 | 32 | 2.1050 |
101
+ | 1.9011 | 2.95 | 48 | 1.8082 |
102
+ | 1.6837 | 3.95 | 64 | 1.6178 |
103
+ | 1.4887 | 4.95 | 80 | 1.4897 |
104
+ | 1.3812 | 5.95 | 96 | 1.4017 |
105
+ | 1.2944 | 6.95 | 112 | 1.3437 |
106
+ | 1.2574 | 7.95 | 128 | 1.3127 |
107
+ | 1.2325 | 8.95 | 144 | 1.3009 |
108
+ | 1.2223 | 9.95 | 160 | 1.2987 |
109
+
110
+
111
+ ### Framework versions
112
+
113
+ - Transformers 4.25.0.dev0
114
+ - Pytorch 1.13.0+cu117
115
+ - Datasets 2.6.1
116
+ - Tokenizers 0.13.1
117
+
118
+