RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
opt-350m-magicprompt-SD - AWQ
|
11 |
+
- Model creator: https://huggingface.co/pszemraj/
|
12 |
+
- Original model: https://huggingface.co/pszemraj/opt-350m-magicprompt-SD/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: other
|
20 |
+
tags:
|
21 |
+
- generated_from_trainer
|
22 |
+
- stable diffusion
|
23 |
+
- diffusion
|
24 |
+
- text2image
|
25 |
+
- prompt augment
|
26 |
+
- prompt engineering
|
27 |
+
datasets:
|
28 |
+
- Gustavosta/Stable-Diffusion-Prompts
|
29 |
+
widget:
|
30 |
+
- text: morning sun over Jakarta
|
31 |
+
example_title: morning sun
|
32 |
+
- text: 'WARNING: pip is'
|
33 |
+
example_title: pip
|
34 |
+
- text: sentient cheese
|
35 |
+
example_title: sentient cheese
|
36 |
+
- text: cheeps are
|
37 |
+
example_title: cheeps
|
38 |
+
- text: avocado armchair
|
39 |
+
example_title: creative prompt
|
40 |
+
- text: Landscape of
|
41 |
+
example_title: landscape
|
42 |
+
parameters:
|
43 |
+
min_length: 16
|
44 |
+
max_length: 96
|
45 |
+
no_repeat_ngram_size: 1
|
46 |
+
do_sample: true
|
47 |
+
base_model: facebook/opt-350m
|
48 |
+
model-index:
|
49 |
+
- name: opt-350m-magicprompt-SD
|
50 |
+
results: []
|
51 |
+
---
|
52 |
+
|
53 |
+
|
54 |
+
# opt-350m-magicprompt-SD
|
55 |
+
|
56 |
+
Generate/augment your prompt, stable diffusion style.
|
57 |
+
|
58 |
+
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the Gustavosta/Stable-Diffusion-Prompts dataset.
|
59 |
+
It achieves the following results on the evaluation set:
|
60 |
+
- Loss: 1.2987
|
61 |
+
- eval_steps_per_second = 16.623
|
62 |
+
- perplexity = 3.6644
|
63 |
+
|
64 |
+
## example
|
65 |
+
|
66 |
+
![jakarta](https://i.imgur.com/TP3HQOA.png)
|
67 |
+
|
68 |
+
output (_on DALL-E 2, but as words are words, works anywhere_)
|
69 |
+
|
70 |
+
![dalle2-jakarta](https://i.ibb.co/BKVxwmJ/DALL-E-2022-11-09-12-37-56-morning-sun-over-Jakarta-by-Simon-St-lenhag-and-Gaston-Bussiere-Matte-pai.png)
|
71 |
+
|
72 |
+
## Training and evaluation data
|
73 |
+
|
74 |
+
refer to the `Gustavosta/Stable-Diffusion-Prompts` dataset.
|
75 |
+
|
76 |
+
## Training procedure
|
77 |
+
|
78 |
+
### Training hyperparameters
|
79 |
+
|
80 |
+
The following hyperparameters were used during training:
|
81 |
+
- learning_rate: 0.0001
|
82 |
+
- train_batch_size: 8
|
83 |
+
- eval_batch_size: 2
|
84 |
+
- seed: 42
|
85 |
+
- distributed_type: multi-GPU
|
86 |
+
- num_devices: 2
|
87 |
+
- gradient_accumulation_steps: 32
|
88 |
+
- total_train_batch_size: 512
|
89 |
+
- total_eval_batch_size: 4
|
90 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
91 |
+
- lr_scheduler_type: cosine
|
92 |
+
- lr_scheduler_warmup_ratio: 0.05
|
93 |
+
- num_epochs: 10.0
|
94 |
+
|
95 |
+
### Training results
|
96 |
+
|
97 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
98 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
99 |
+
| 2.8568 | 0.95 | 16 | 2.5937 |
|
100 |
+
| 2.2487 | 1.95 | 32 | 2.1050 |
|
101 |
+
| 1.9011 | 2.95 | 48 | 1.8082 |
|
102 |
+
| 1.6837 | 3.95 | 64 | 1.6178 |
|
103 |
+
| 1.4887 | 4.95 | 80 | 1.4897 |
|
104 |
+
| 1.3812 | 5.95 | 96 | 1.4017 |
|
105 |
+
| 1.2944 | 6.95 | 112 | 1.3437 |
|
106 |
+
| 1.2574 | 7.95 | 128 | 1.3127 |
|
107 |
+
| 1.2325 | 8.95 | 144 | 1.3009 |
|
108 |
+
| 1.2223 | 9.95 | 160 | 1.2987 |
|
109 |
+
|
110 |
+
|
111 |
+
### Framework versions
|
112 |
+
|
113 |
+
- Transformers 4.25.0.dev0
|
114 |
+
- Pytorch 1.13.0+cu117
|
115 |
+
- Datasets 2.6.1
|
116 |
+
- Tokenizers 0.13.1
|
117 |
+
|
118 |
+
|