RichardErkhov commited on
Commit
7a366cd
·
verified ·
1 Parent(s): 92d646c

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Faro-Yi-34B-DPO - GGUF
11
+ - Model creator: https://huggingface.co/wenbopan/
12
+ - Original model: https://huggingface.co/wenbopan/Faro-Yi-34B-DPO/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Faro-Yi-34B-DPO.Q2_K.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q2_K.gguf) | Q2_K | 11.94GB |
18
+ | [Faro-Yi-34B-DPO.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.IQ3_XS.gguf) | IQ3_XS | 13.26GB |
19
+ | [Faro-Yi-34B-DPO.IQ3_S.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.IQ3_S.gguf) | IQ3_S | 13.99GB |
20
+ | [Faro-Yi-34B-DPO.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q3_K_S.gguf) | Q3_K_S | 13.93GB |
21
+ | [Faro-Yi-34B-DPO.IQ3_M.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.IQ3_M.gguf) | IQ3_M | 14.5GB |
22
+ | [Faro-Yi-34B-DPO.Q3_K.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q3_K.gguf) | Q3_K | 15.51GB |
23
+ | [Faro-Yi-34B-DPO.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q3_K_M.gguf) | Q3_K_M | 15.51GB |
24
+ | [Faro-Yi-34B-DPO.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q3_K_L.gguf) | Q3_K_L | 16.89GB |
25
+ | [Faro-Yi-34B-DPO.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.IQ4_XS.gguf) | IQ4_XS | 17.36GB |
26
+ | [Faro-Yi-34B-DPO.Q4_0.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q4_0.gguf) | Q4_0 | 18.13GB |
27
+ | [Faro-Yi-34B-DPO.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.IQ4_NL.gguf) | IQ4_NL | 18.3GB |
28
+ | [Faro-Yi-34B-DPO.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q4_K_S.gguf) | Q4_K_S | 18.25GB |
29
+ | [Faro-Yi-34B-DPO.Q4_K.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q4_K.gguf) | Q4_K | 19.24GB |
30
+ | [Faro-Yi-34B-DPO.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q4_K_M.gguf) | Q4_K_M | 19.24GB |
31
+ | [Faro-Yi-34B-DPO.Q4_1.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q4_1.gguf) | Q4_1 | 20.1GB |
32
+ | [Faro-Yi-34B-DPO.Q5_0.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q5_0.gguf) | Q5_0 | 22.08GB |
33
+ | [Faro-Yi-34B-DPO.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q5_K_S.gguf) | Q5_K_S | 22.08GB |
34
+ | [Faro-Yi-34B-DPO.Q5_K.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q5_K.gguf) | Q5_K | 22.65GB |
35
+ | [Faro-Yi-34B-DPO.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q5_K_M.gguf) | Q5_K_M | 22.65GB |
36
+ | [Faro-Yi-34B-DPO.Q5_1.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q5_1.gguf) | Q5_1 | 24.05GB |
37
+ | [Faro-Yi-34B-DPO.Q6_K.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q6_K.gguf) | Q6_K | 26.28GB |
38
+ | [Faro-Yi-34B-DPO.Q8_0.gguf](https://huggingface.co/RichardErkhov/wenbopan_-_Faro-Yi-34B-DPO-gguf/blob/main/Faro-Yi-34B-DPO.Q8_0.gguf) | Q8_0 | 34.03GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ language:
46
+ - en
47
+ - zh
48
+ license: mit
49
+ datasets:
50
+ - wenbopan/Chinese-dpo-pairs
51
+ - Intel/orca_dpo_pairs
52
+ - argilla/ultrafeedback-binarized-preferences-cleaned
53
+ - jondurbin/truthy-dpo-v0.1
54
+ pipeline_tag: text-generation
55
+ ---
56
+
57
+ # Faro-Yi-9B-DPO
58
+
59
+ This is the DPO version of [wenbopan/Faro-Yi-34B](https://huggingface.co/wenbopan/Faro-Yi-34B). Compared to Faro-Yi-34B and [Yi-34B-200K](https://huggingface.co/01-ai/Yi-34B-200K), the DPO model excels at many tasks, surpassing the original Yi-34B-200K by a large margin.
60
+ ## How to Use
61
+
62
+ Faro-Yi-34B-DPO uses the chatml template and performs well in both short and long contexts.
63
+
64
+
65
+ ```python
66
+ import io
67
+ import requests
68
+ from PyPDF2 import PdfReader
69
+ from vllm import LLM, SamplingParams
70
+
71
+ llm = LLM(model="wenbopan/Faro-Yi-34B-DPO", kv_cache_dtype="fp8_e5m2", max_model_len=100000)
72
+
73
+ pdf_data = io.BytesIO(requests.get("https://arxiv.org/pdf/2303.08774.pdf").content)
74
+ document = "".join(page.extract_text() for page in PdfReader(pdf_data).pages) # 100 pages
75
+
76
+ question = f"{document}\n\nAccording to the paper, what is the parameter count of GPT-4?"
77
+ messages = [ {"role": "user", "content": question} ] # 83K tokens
78
+ prompt = llm.get_tokenizer().apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
79
+ output = llm.generate(prompt, SamplingParams(temperature=0.8, max_tokens=500))
80
+ print(output[0].outputs[0].text)
81
+ # Yi-9B-200K: 175B. GPT-4 has 175B \nparameters. How many models were combined to create GPT-4? Answer: 6. ...
82
+ # Faro-Yi-9B: GPT-4 does not have a publicly disclosed parameter count due to the competitive landscape and safety implications of large-scale models like GPT-4. ...
83
+ ```
84
+
85
+
86
+ <details> <summary>Or With Transformers</summary>
87
+
88
+ ```python
89
+ from transformers import AutoModelForCausalLM, AutoTokenizer
90
+
91
+ model = AutoModelForCausalLM.from_pretrained('wenbopan/Faro-Yi-34B-DPO', device_map="cuda")
92
+ tokenizer = AutoTokenizer.from_pretrained('wenbopan/Faro-Yi-34B-DPO')
93
+ messages = [
94
+ {"role": "system", "content": "You are a helpful assistant. Always answer with a short response."},
95
+ {"role": "user", "content": "Tell me what is Pythagorean theorem like you are a pirate."}
96
+ ]
97
+ input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
98
+ generated_ids = model.generate(input_ids, max_new_tokens=512, temperature=0.5)
99
+ response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) # Aye, matey! The Pythagorean theorem is a nautical rule that helps us find the length of the third side of a triangle. ...
100
+ ```
101
+
102
+ </details>
103
+