Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +1019 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +67 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 512, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e369ffa6cabab73d45ccfe57b15306f60df8672a95facbcaf940343382ad8719
|
3 |
+
size 1575072
|
README.md
ADDED
@@ -0,0 +1,1019 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
- en
|
5 |
+
- es
|
6 |
+
- fr
|
7 |
+
- it
|
8 |
+
- nl
|
9 |
+
- pl
|
10 |
+
- pt
|
11 |
+
- ru
|
12 |
+
- zh
|
13 |
+
tags:
|
14 |
+
- sentence-transformers
|
15 |
+
- sentence-similarity
|
16 |
+
- feature-extraction
|
17 |
+
- generated_from_trainer
|
18 |
+
- dataset_size:51741
|
19 |
+
- loss:CoSENTLoss
|
20 |
+
base_model: RomainDarous/pre_training_original_model
|
21 |
+
widget:
|
22 |
+
- source_sentence: Starsza para azjatycka pozuje z noworodkiem przy stole obiadowym.
|
23 |
+
sentences:
|
24 |
+
- Koszykarz ma zamiar zdobyć punkty dla swojej drużyny.
|
25 |
+
- Grupa starszych osób pozuje wokół stołu w jadalni.
|
26 |
+
- Możliwe, że układ słoneczny taki jak nasz może istnieć poza galaktyką.
|
27 |
+
- source_sentence: Englisch arbeitet überall mit Menschen, die Dinge kaufen und verkaufen,
|
28 |
+
und in der Gastfreundschaft und im Tourismusgeschäft.
|
29 |
+
sentences:
|
30 |
+
- Ich bin in Maharashtra (einschließlich Mumbai) und Andhra Pradesh herumgereist,
|
31 |
+
und ich hatte kein Problem damit, nur mit Englisch auszukommen.
|
32 |
+
- 'Ein griechischsprachiger Sklave (δούλος, doulos) würde seinen Herrn, glaube ich,
|
33 |
+
κύριος nennen (translit: kurios; Herr, Herr, Herr, Herr; Vokativform: κύριε).'
|
34 |
+
- Das Paar lag auf dem Bett.
|
35 |
+
- source_sentence: Si vous vous comprenez et comprenez votre ennemi, vous aurez beaucoup
|
36 |
+
plus de chances de gagner n'importe quelle bataille.
|
37 |
+
sentences:
|
38 |
+
- 'Outre les probabilités de gagner une bataille théorique, cette citation a une
|
39 |
+
autre signification : l''importance de connaître/comprendre les autres.'
|
40 |
+
- Une femme et un chien se promènent ensemble.
|
41 |
+
- Un homme joue de la guitare.
|
42 |
+
- source_sentence: Un homme joue de la harpe.
|
43 |
+
sentences:
|
44 |
+
- Une femme joue de la guitare.
|
45 |
+
- une femme a un enfant.
|
46 |
+
- Un groupe de personnes est debout et assis sur le sol la nuit.
|
47 |
+
- source_sentence: Dois cães a lutar na neve.
|
48 |
+
sentences:
|
49 |
+
- Dois cães brincam na neve.
|
50 |
+
- Pode sempre perguntar, então é a escolha do autor a aceitar ou não.
|
51 |
+
- Um gato está a caminhar sobre chão de madeira dura.
|
52 |
+
datasets:
|
53 |
+
- PhilipMay/stsb_multi_mt
|
54 |
+
pipeline_tag: sentence-similarity
|
55 |
+
library_name: sentence-transformers
|
56 |
+
metrics:
|
57 |
+
- pearson_cosine
|
58 |
+
- spearman_cosine
|
59 |
+
model-index:
|
60 |
+
- name: SentenceTransformer based on RomainDarous/pre_training_original_model
|
61 |
+
results:
|
62 |
+
- task:
|
63 |
+
type: semantic-similarity
|
64 |
+
name: Semantic Similarity
|
65 |
+
dataset:
|
66 |
+
name: sts eval
|
67 |
+
type: sts-eval
|
68 |
+
metrics:
|
69 |
+
- type: pearson_cosine
|
70 |
+
value: 0.649351613026743
|
71 |
+
name: Pearson Cosine
|
72 |
+
- type: spearman_cosine
|
73 |
+
value: 0.6712113629733555
|
74 |
+
name: Spearman Cosine
|
75 |
+
- type: pearson_cosine
|
76 |
+
value: 0.6648874938903813
|
77 |
+
name: Pearson Cosine
|
78 |
+
- type: spearman_cosine
|
79 |
+
value: 0.6859979455545288
|
80 |
+
name: Spearman Cosine
|
81 |
+
- type: pearson_cosine
|
82 |
+
value: 0.6574990404767099
|
83 |
+
name: Pearson Cosine
|
84 |
+
- type: spearman_cosine
|
85 |
+
value: 0.6819347305734045
|
86 |
+
name: Spearman Cosine
|
87 |
+
- type: pearson_cosine
|
88 |
+
value: 0.6482851200513846
|
89 |
+
name: Pearson Cosine
|
90 |
+
- type: spearman_cosine
|
91 |
+
value: 0.6739057551228634
|
92 |
+
name: Spearman Cosine
|
93 |
+
- type: pearson_cosine
|
94 |
+
value: 0.657747388798702
|
95 |
+
name: Pearson Cosine
|
96 |
+
- type: spearman_cosine
|
97 |
+
value: 0.6797522820481435
|
98 |
+
name: Spearman Cosine
|
99 |
+
- type: pearson_cosine
|
100 |
+
value: 0.580138787555855
|
101 |
+
name: Pearson Cosine
|
102 |
+
- type: spearman_cosine
|
103 |
+
value: 0.6025843591291092
|
104 |
+
name: Spearman Cosine
|
105 |
+
- type: pearson_cosine
|
106 |
+
value: 0.6445711160678915
|
107 |
+
name: Pearson Cosine
|
108 |
+
- type: spearman_cosine
|
109 |
+
value: 0.6738244742184887
|
110 |
+
name: Spearman Cosine
|
111 |
+
- type: pearson_cosine
|
112 |
+
value: 0.6060638359389463
|
113 |
+
name: Pearson Cosine
|
114 |
+
- type: spearman_cosine
|
115 |
+
value: 0.6210827296807453
|
116 |
+
name: Spearman Cosine
|
117 |
+
- type: pearson_cosine
|
118 |
+
value: 0.6672294139281439
|
119 |
+
name: Pearson Cosine
|
120 |
+
- type: spearman_cosine
|
121 |
+
value: 0.6864882079409924
|
122 |
+
name: Spearman Cosine
|
123 |
+
- task:
|
124 |
+
type: semantic-similarity
|
125 |
+
name: Semantic Similarity
|
126 |
+
dataset:
|
127 |
+
name: sts test
|
128 |
+
type: sts-test
|
129 |
+
metrics:
|
130 |
+
- type: pearson_cosine
|
131 |
+
value: 0.6279093972489541
|
132 |
+
name: Pearson Cosine
|
133 |
+
- type: spearman_cosine
|
134 |
+
value: 0.6320355986028895
|
135 |
+
name: Spearman Cosine
|
136 |
+
- type: pearson_cosine
|
137 |
+
value: 0.6433522116833627
|
138 |
+
name: Pearson Cosine
|
139 |
+
- type: spearman_cosine
|
140 |
+
value: 0.658000076471118
|
141 |
+
name: Spearman Cosine
|
142 |
+
- type: pearson_cosine
|
143 |
+
value: 0.6271929274305698
|
144 |
+
name: Pearson Cosine
|
145 |
+
- type: spearman_cosine
|
146 |
+
value: 0.6229896619978917
|
147 |
+
name: Spearman Cosine
|
148 |
+
- type: pearson_cosine
|
149 |
+
value: 0.6391062028706688
|
150 |
+
name: Pearson Cosine
|
151 |
+
- type: spearman_cosine
|
152 |
+
value: 0.6417698712729121
|
153 |
+
name: Spearman Cosine
|
154 |
+
- type: pearson_cosine
|
155 |
+
value: 0.622947898324511
|
156 |
+
name: Pearson Cosine
|
157 |
+
- type: spearman_cosine
|
158 |
+
value: 0.6179788172853071
|
159 |
+
name: Spearman Cosine
|
160 |
+
- type: pearson_cosine
|
161 |
+
value: 0.5903164175964553
|
162 |
+
name: Pearson Cosine
|
163 |
+
- type: spearman_cosine
|
164 |
+
value: 0.5887507390354803
|
165 |
+
name: Spearman Cosine
|
166 |
+
- type: pearson_cosine
|
167 |
+
value: 0.640080846863563
|
168 |
+
name: Pearson Cosine
|
169 |
+
- type: spearman_cosine
|
170 |
+
value: 0.6391082728350455
|
171 |
+
name: Spearman Cosine
|
172 |
+
- type: pearson_cosine
|
173 |
+
value: 0.6172821161239198
|
174 |
+
name: Pearson Cosine
|
175 |
+
- type: spearman_cosine
|
176 |
+
value: 0.6180296923884917
|
177 |
+
name: Spearman Cosine
|
178 |
+
- type: pearson_cosine
|
179 |
+
value: 0.6607896399210559
|
180 |
+
name: Pearson Cosine
|
181 |
+
- type: spearman_cosine
|
182 |
+
value: 0.6616750284666137
|
183 |
+
name: Spearman Cosine
|
184 |
+
---
|
185 |
+
|
186 |
+
# SentenceTransformer based on RomainDarous/pre_training_original_model
|
187 |
+
|
188 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [RomainDarous/pre_training_original_model](https://huggingface.co/RomainDarous/pre_training_original_model) on the [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) and [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
189 |
+
|
190 |
+
## Model Details
|
191 |
+
|
192 |
+
### Model Description
|
193 |
+
- **Model Type:** Sentence Transformer
|
194 |
+
- **Base model:** [RomainDarous/pre_training_original_model](https://huggingface.co/RomainDarous/pre_training_original_model) <!-- at revision 880d5ef9d016fb1257687b6b61da19f4978b0f0c -->
|
195 |
+
- **Maximum Sequence Length:** 128 tokens
|
196 |
+
- **Output Dimensionality:** 512 dimensions
|
197 |
+
- **Similarity Function:** Cosine Similarity
|
198 |
+
- **Training Datasets:**
|
199 |
+
- [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
200 |
+
- [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
201 |
+
- [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
202 |
+
- [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
203 |
+
- [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
204 |
+
- [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
205 |
+
- [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
206 |
+
- [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
207 |
+
- [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
208 |
+
- **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
|
209 |
+
<!-- - **License:** Unknown -->
|
210 |
+
|
211 |
+
### Model Sources
|
212 |
+
|
213 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
214 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
215 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
216 |
+
|
217 |
+
### Full Model Architecture
|
218 |
+
|
219 |
+
```
|
220 |
+
SentenceTransformer(
|
221 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
222 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
223 |
+
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
224 |
+
)
|
225 |
+
```
|
226 |
+
|
227 |
+
## Usage
|
228 |
+
|
229 |
+
### Direct Usage (Sentence Transformers)
|
230 |
+
|
231 |
+
First install the Sentence Transformers library:
|
232 |
+
|
233 |
+
```bash
|
234 |
+
pip install -U sentence-transformers
|
235 |
+
```
|
236 |
+
|
237 |
+
Then you can load this model and run inference.
|
238 |
+
```python
|
239 |
+
from sentence_transformers import SentenceTransformer
|
240 |
+
|
241 |
+
# Download from the 🤗 Hub
|
242 |
+
model = SentenceTransformer("RomainDarous/multists_finetuned_original_model")
|
243 |
+
# Run inference
|
244 |
+
sentences = [
|
245 |
+
'Dois cães a lutar na neve.',
|
246 |
+
'Dois cães brincam na neve.',
|
247 |
+
'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
|
248 |
+
]
|
249 |
+
embeddings = model.encode(sentences)
|
250 |
+
print(embeddings.shape)
|
251 |
+
# [3, 512]
|
252 |
+
|
253 |
+
# Get the similarity scores for the embeddings
|
254 |
+
similarities = model.similarity(embeddings, embeddings)
|
255 |
+
print(similarities.shape)
|
256 |
+
# [3, 3]
|
257 |
+
```
|
258 |
+
|
259 |
+
<!--
|
260 |
+
### Direct Usage (Transformers)
|
261 |
+
|
262 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
263 |
+
|
264 |
+
</details>
|
265 |
+
-->
|
266 |
+
|
267 |
+
<!--
|
268 |
+
### Downstream Usage (Sentence Transformers)
|
269 |
+
|
270 |
+
You can finetune this model on your own dataset.
|
271 |
+
|
272 |
+
<details><summary>Click to expand</summary>
|
273 |
+
|
274 |
+
</details>
|
275 |
+
-->
|
276 |
+
|
277 |
+
<!--
|
278 |
+
### Out-of-Scope Use
|
279 |
+
|
280 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
281 |
+
-->
|
282 |
+
|
283 |
+
## Evaluation
|
284 |
+
|
285 |
+
### Metrics
|
286 |
+
|
287 |
+
#### Semantic Similarity
|
288 |
+
|
289 |
+
* Datasets: `sts-eval`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test` and `sts-test`
|
290 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
291 |
+
|
292 |
+
| Metric | sts-eval | sts-test |
|
293 |
+
|:--------------------|:-----------|:-----------|
|
294 |
+
| pearson_cosine | 0.6494 | 0.6608 |
|
295 |
+
| **spearman_cosine** | **0.6712** | **0.6617** |
|
296 |
+
|
297 |
+
#### Semantic Similarity
|
298 |
+
|
299 |
+
* Dataset: `sts-eval`
|
300 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
301 |
+
|
302 |
+
| Metric | Value |
|
303 |
+
|:--------------------|:----------|
|
304 |
+
| pearson_cosine | 0.6649 |
|
305 |
+
| **spearman_cosine** | **0.686** |
|
306 |
+
|
307 |
+
#### Semantic Similarity
|
308 |
+
|
309 |
+
* Dataset: `sts-eval`
|
310 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
311 |
+
|
312 |
+
| Metric | Value |
|
313 |
+
|:--------------------|:-----------|
|
314 |
+
| pearson_cosine | 0.6575 |
|
315 |
+
| **spearman_cosine** | **0.6819** |
|
316 |
+
|
317 |
+
#### Semantic Similarity
|
318 |
+
|
319 |
+
* Dataset: `sts-eval`
|
320 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
321 |
+
|
322 |
+
| Metric | Value |
|
323 |
+
|:--------------------|:-----------|
|
324 |
+
| pearson_cosine | 0.6483 |
|
325 |
+
| **spearman_cosine** | **0.6739** |
|
326 |
+
|
327 |
+
#### Semantic Similarity
|
328 |
+
|
329 |
+
* Dataset: `sts-eval`
|
330 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
331 |
+
|
332 |
+
| Metric | Value |
|
333 |
+
|:--------------------|:-----------|
|
334 |
+
| pearson_cosine | 0.6577 |
|
335 |
+
| **spearman_cosine** | **0.6798** |
|
336 |
+
|
337 |
+
#### Semantic Similarity
|
338 |
+
|
339 |
+
* Dataset: `sts-eval`
|
340 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
341 |
+
|
342 |
+
| Metric | Value |
|
343 |
+
|:--------------------|:-----------|
|
344 |
+
| pearson_cosine | 0.5801 |
|
345 |
+
| **spearman_cosine** | **0.6026** |
|
346 |
+
|
347 |
+
#### Semantic Similarity
|
348 |
+
|
349 |
+
* Dataset: `sts-eval`
|
350 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
351 |
+
|
352 |
+
| Metric | Value |
|
353 |
+
|:--------------------|:-----------|
|
354 |
+
| pearson_cosine | 0.6446 |
|
355 |
+
| **spearman_cosine** | **0.6738** |
|
356 |
+
|
357 |
+
#### Semantic Similarity
|
358 |
+
|
359 |
+
* Dataset: `sts-eval`
|
360 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
361 |
+
|
362 |
+
| Metric | Value |
|
363 |
+
|:--------------------|:-----------|
|
364 |
+
| pearson_cosine | 0.6061 |
|
365 |
+
| **spearman_cosine** | **0.6211** |
|
366 |
+
|
367 |
+
#### Semantic Similarity
|
368 |
+
|
369 |
+
* Dataset: `sts-eval`
|
370 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
371 |
+
|
372 |
+
| Metric | Value |
|
373 |
+
|:--------------------|:-----------|
|
374 |
+
| pearson_cosine | 0.6672 |
|
375 |
+
| **spearman_cosine** | **0.6865** |
|
376 |
+
|
377 |
+
<!--
|
378 |
+
## Bias, Risks and Limitations
|
379 |
+
|
380 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
381 |
+
-->
|
382 |
+
|
383 |
+
<!--
|
384 |
+
### Recommendations
|
385 |
+
|
386 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
387 |
+
-->
|
388 |
+
|
389 |
+
## Training Details
|
390 |
+
|
391 |
+
### Training Datasets
|
392 |
+
|
393 |
+
#### multi_stsb_de
|
394 |
+
|
395 |
+
* Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
396 |
+
* Size: 5,749 training samples
|
397 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
398 |
+
* Approximate statistics based on the first 1000 samples:
|
399 |
+
| | sentence1 | sentence2 | score |
|
400 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
401 |
+
| type | string | string | float |
|
402 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 12.05 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.01 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
403 |
+
* Samples:
|
404 |
+
| sentence1 | sentence2 | score |
|
405 |
+
|:---------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
|
406 |
+
| <code>Ein Flugzeug hebt gerade ab.</code> | <code>Ein Flugzeug hebt gerade ab.</code> | <code>1.0</code> |
|
407 |
+
| <code>Ein Mann spielt eine große Flöte.</code> | <code>Ein Mann spielt eine Flöte.</code> | <code>0.7599999904632568</code> |
|
408 |
+
| <code>Ein Mann streicht geriebenen Käse auf eine Pizza.</code> | <code>Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.</code> | <code>0.7599999904632568</code> |
|
409 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
410 |
+
```json
|
411 |
+
{
|
412 |
+
"scale": 20.0,
|
413 |
+
"similarity_fct": "pairwise_cos_sim"
|
414 |
+
}
|
415 |
+
```
|
416 |
+
|
417 |
+
#### multi_stsb_es
|
418 |
+
|
419 |
+
* Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
420 |
+
* Size: 5,749 training samples
|
421 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
422 |
+
* Approximate statistics based on the first 1000 samples:
|
423 |
+
| | sentence1 | sentence2 | score |
|
424 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
425 |
+
| type | string | string | float |
|
426 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.28 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.14 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
427 |
+
* Samples:
|
428 |
+
| sentence1 | sentence2 | score |
|
429 |
+
|:----------------------------------------------------------------|:----------------------------------------------------------------------|:--------------------------------|
|
430 |
+
| <code>Un avión está despegando.</code> | <code>Un avión está despegando.</code> | <code>1.0</code> |
|
431 |
+
| <code>Un hombre está tocando una gran flauta.</code> | <code>Un hombre está tocando una flauta.</code> | <code>0.7599999904632568</code> |
|
432 |
+
| <code>Un hombre está untando queso rallado en una pizza.</code> | <code>Un hombre está untando queso rallado en una pizza cruda.</code> | <code>0.7599999904632568</code> |
|
433 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
434 |
+
```json
|
435 |
+
{
|
436 |
+
"scale": 20.0,
|
437 |
+
"similarity_fct": "pairwise_cos_sim"
|
438 |
+
}
|
439 |
+
```
|
440 |
+
|
441 |
+
#### multi_stsb_fr
|
442 |
+
|
443 |
+
* Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
444 |
+
* Size: 5,749 training samples
|
445 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
446 |
+
* Approximate statistics based on the first 1000 samples:
|
447 |
+
| | sentence1 | sentence2 | score |
|
448 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
449 |
+
| type | string | string | float |
|
450 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 12.47 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.37 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
451 |
+
* Samples:
|
452 |
+
| sentence1 | sentence2 | score |
|
453 |
+
|:-----------------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
|
454 |
+
| <code>Un avion est en train de décoller.</code> | <code>Un avion est en train de décoller.</code> | <code>1.0</code> |
|
455 |
+
| <code>Un homme joue d'une grande flûte.</code> | <code>Un homme joue de la flûte.</code> | <code>0.7599999904632568</code> |
|
456 |
+
| <code>Un homme étale du fromage râpé sur une pizza.</code> | <code>Un homme étale du fromage râpé sur une pizza non cuite.</code> | <code>0.7599999904632568</code> |
|
457 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
458 |
+
```json
|
459 |
+
{
|
460 |
+
"scale": 20.0,
|
461 |
+
"similarity_fct": "pairwise_cos_sim"
|
462 |
+
}
|
463 |
+
```
|
464 |
+
|
465 |
+
#### multi_stsb_it
|
466 |
+
|
467 |
+
* Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
468 |
+
* Size: 5,749 training samples
|
469 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
470 |
+
* Approximate statistics based on the first 1000 samples:
|
471 |
+
| | sentence1 | sentence2 | score |
|
472 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
473 |
+
| type | string | string | float |
|
474 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.92 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.81 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
475 |
+
* Samples:
|
476 |
+
| sentence1 | sentence2 | score |
|
477 |
+
|:--------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------|
|
478 |
+
| <code>Un aereo sta decollando.</code> | <code>Un aereo sta decollando.</code> | <code>1.0</code> |
|
479 |
+
| <code>Un uomo sta suonando un grande flauto.</code> | <code>Un uomo sta suonando un flauto.</code> | <code>0.7599999904632568</code> |
|
480 |
+
| <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza.</code> | <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta.</code> | <code>0.7599999904632568</code> |
|
481 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
482 |
+
```json
|
483 |
+
{
|
484 |
+
"scale": 20.0,
|
485 |
+
"similarity_fct": "pairwise_cos_sim"
|
486 |
+
}
|
487 |
+
```
|
488 |
+
|
489 |
+
#### multi_stsb_nl
|
490 |
+
|
491 |
+
* Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
492 |
+
* Size: 5,749 training samples
|
493 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
494 |
+
* Approximate statistics based on the first 1000 samples:
|
495 |
+
| | sentence1 | sentence2 | score |
|
496 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
497 |
+
| type | string | string | float |
|
498 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 12.12 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
499 |
+
* Samples:
|
500 |
+
| sentence1 | sentence2 | score |
|
501 |
+
|:--------------------------------------------------------|:--------------------------------------------------------------------|:--------------------------------|
|
502 |
+
| <code>Er gaat een vliegtuig opstijgen.</code> | <code>Er gaat een vliegtuig opstijgen.</code> | <code>1.0</code> |
|
503 |
+
| <code>Een man speelt een grote fluit.</code> | <code>Een man speelt fluit.</code> | <code>0.7599999904632568</code> |
|
504 |
+
| <code>Een man smeert geraspte kaas op een pizza.</code> | <code>Een man strooit geraspte kaas op een ongekookte pizza.</code> | <code>0.7599999904632568</code> |
|
505 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
506 |
+
```json
|
507 |
+
{
|
508 |
+
"scale": 20.0,
|
509 |
+
"similarity_fct": "pairwise_cos_sim"
|
510 |
+
}
|
511 |
+
```
|
512 |
+
|
513 |
+
#### multi_stsb_pl
|
514 |
+
|
515 |
+
* Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
516 |
+
* Size: 5,749 training samples
|
517 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
518 |
+
* Approximate statistics based on the first 1000 samples:
|
519 |
+
| | sentence1 | sentence2 | score |
|
520 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
521 |
+
| type | string | string | float |
|
522 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 13.24 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.08 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
523 |
+
* Samples:
|
524 |
+
| sentence1 | sentence2 | score |
|
525 |
+
|:-----------------------------------------------------------|:------------------------------------------------------------------------|:--------------------------------|
|
526 |
+
| <code>Samolot wystartował.</code> | <code>Samolot wystartował.</code> | <code>1.0</code> |
|
527 |
+
| <code>Człowiek gra na dużym flecie.</code> | <code>Człowiek gra na flecie.</code> | <code>0.7599999904632568</code> |
|
528 |
+
| <code>Mężczyzna rozsiewa na pizzy rozdrobniony ser.</code> | <code>Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy.</code> | <code>0.7599999904632568</code> |
|
529 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
530 |
+
```json
|
531 |
+
{
|
532 |
+
"scale": 20.0,
|
533 |
+
"similarity_fct": "pairwise_cos_sim"
|
534 |
+
}
|
535 |
+
```
|
536 |
+
|
537 |
+
#### multi_stsb_pt
|
538 |
+
|
539 |
+
* Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
540 |
+
* Size: 5,749 training samples
|
541 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
542 |
+
* Approximate statistics based on the first 1000 samples:
|
543 |
+
| | sentence1 | sentence2 | score |
|
544 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
545 |
+
| type | string | string | float |
|
546 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 13.0 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.99 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
547 |
+
* Samples:
|
548 |
+
| sentence1 | sentence2 | score |
|
549 |
+
|:------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------|
|
550 |
+
| <code>Um avião está a descolar.</code> | <code>Um avião aéreo está a descolar.</code> | <code>1.0</code> |
|
551 |
+
| <code>Um homem está a tocar uma grande flauta.</code> | <code>Um homem está a tocar uma flauta.</code> | <code>0.7599999904632568</code> |
|
552 |
+
| <code>Um homem está a espalhar queijo desfiado numa pizza.</code> | <code>Um homem está a espalhar queijo desfiado sobre uma pizza não cozida.</code> | <code>0.7599999904632568</code> |
|
553 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
554 |
+
```json
|
555 |
+
{
|
556 |
+
"scale": 20.0,
|
557 |
+
"similarity_fct": "pairwise_cos_sim"
|
558 |
+
}
|
559 |
+
```
|
560 |
+
|
561 |
+
#### multi_stsb_ru
|
562 |
+
|
563 |
+
* Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
564 |
+
* Size: 5,749 training samples
|
565 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
566 |
+
* Approximate statistics based on the first 1000 samples:
|
567 |
+
| | sentence1 | sentence2 | score |
|
568 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
569 |
+
| type | string | string | float |
|
570 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 12.66 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.67 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
571 |
+
* Samples:
|
572 |
+
| sentence1 | sentence2 | score |
|
573 |
+
|:------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
|
574 |
+
| <code>Самолет взлетает.</code> | <code>Взлетает самолет.</code> | <code>1.0</code> |
|
575 |
+
| <code>Человек играет на большой флейте.</code> | <code>Человек играет на флейте.</code> | <code>0.7599999904632568</code> |
|
576 |
+
| <code>Мужчина разбрасывает сыр на пиццу.</code> | <code>Мужчина разбрасывает измельченный сыр на вареную пиццу.</code> | <code>0.7599999904632568</code> |
|
577 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
578 |
+
```json
|
579 |
+
{
|
580 |
+
"scale": 20.0,
|
581 |
+
"similarity_fct": "pairwise_cos_sim"
|
582 |
+
}
|
583 |
+
```
|
584 |
+
|
585 |
+
#### multi_stsb_zh
|
586 |
+
|
587 |
+
* Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
588 |
+
* Size: 5,749 training samples
|
589 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
590 |
+
* Approximate statistics based on the first 1000 samples:
|
591 |
+
| | sentence1 | sentence2 | score |
|
592 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
593 |
+
| type | string | string | float |
|
594 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.55 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.73 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
595 |
+
* Samples:
|
596 |
+
| sentence1 | sentence2 | score |
|
597 |
+
|:------------------------------|:----------------------------------|:--------------------------------|
|
598 |
+
| <code>一架飞机正在起飞。</code> | <code>一架飞机正在起飞。</code> | <code>1.0</code> |
|
599 |
+
| <code>一个男人正在吹一支大笛子。</code> | <code>一个人在吹笛子。</code> | <code>0.7599999904632568</code> |
|
600 |
+
| <code>一名男子正在比萨饼上涂抹奶酪丝。</code> | <code>一名男子正在将奶酪丝涂抹在未熟的披萨上。</code> | <code>0.7599999904632568</code> |
|
601 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
602 |
+
```json
|
603 |
+
{
|
604 |
+
"scale": 20.0,
|
605 |
+
"similarity_fct": "pairwise_cos_sim"
|
606 |
+
}
|
607 |
+
```
|
608 |
+
|
609 |
+
### Evaluation Datasets
|
610 |
+
|
611 |
+
#### multi_stsb_de
|
612 |
+
|
613 |
+
* Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
614 |
+
* Size: 1,500 evaluation samples
|
615 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
616 |
+
* Approximate statistics based on the first 1000 samples:
|
617 |
+
| | sentence1 | sentence2 | score |
|
618 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
619 |
+
| type | string | string | float |
|
620 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 18.96 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.01 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
621 |
+
* Samples:
|
622 |
+
| sentence1 | sentence2 | score |
|
623 |
+
|:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
|
624 |
+
| <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>1.0</code> |
|
625 |
+
| <code>Ein kleines Kind reitet auf einem Pferd.</code> | <code>Ein Kind reitet auf einem Pferd.</code> | <code>0.949999988079071</code> |
|
626 |
+
| <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code> |
|
627 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
628 |
+
```json
|
629 |
+
{
|
630 |
+
"scale": 20.0,
|
631 |
+
"similarity_fct": "pairwise_cos_sim"
|
632 |
+
}
|
633 |
+
```
|
634 |
+
|
635 |
+
#### multi_stsb_es
|
636 |
+
|
637 |
+
* Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
638 |
+
* Size: 1,500 evaluation samples
|
639 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
640 |
+
* Approximate statistics based on the first 1000 samples:
|
641 |
+
| | sentence1 | sentence2 | score |
|
642 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
643 |
+
| type | string | string | float |
|
644 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 18.41 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 18.24 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
645 |
+
* Samples:
|
646 |
+
| sentence1 | sentence2 | score |
|
647 |
+
|:----------------------------------------------------------------------|:---------------------------------------------------------------------|:-------------------------------|
|
648 |
+
| <code>Un hombre con un casco está bailando.</code> | <code>Un hombre con un casco está bailando.</code> | <code>1.0</code> |
|
649 |
+
| <code>Un niño pequeño está montando a caballo.</code> | <code>Un niño está montando a caballo.</code> | <code>0.949999988079071</code> |
|
650 |
+
| <code>Un hombre está alimentando a una serpiente con un ratón.</code> | <code>El hombre está alimentando a la serpiente con un ratón.</code> | <code>1.0</code> |
|
651 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
652 |
+
```json
|
653 |
+
{
|
654 |
+
"scale": 20.0,
|
655 |
+
"similarity_fct": "pairwise_cos_sim"
|
656 |
+
}
|
657 |
+
```
|
658 |
+
|
659 |
+
#### multi_stsb_fr
|
660 |
+
|
661 |
+
* Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
662 |
+
* Size: 1,500 evaluation samples
|
663 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
664 |
+
* Approximate statistics based on the first 1000 samples:
|
665 |
+
| | sentence1 | sentence2 | score |
|
666 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
667 |
+
| type | string | string | float |
|
668 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 19.77 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.62 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
669 |
+
* Samples:
|
670 |
+
| sentence1 | sentence2 | score |
|
671 |
+
|:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:-------------------------------|
|
672 |
+
| <code>Un homme avec un casque de sécurité est en train de danser.</code> | <code>Un homme portant un casque de sécurité est en train de danser.</code> | <code>1.0</code> |
|
673 |
+
| <code>Un jeune enfant monte à cheval.</code> | <code>Un enfant monte à cheval.</code> | <code>0.949999988079071</code> |
|
674 |
+
| <code>Un homme donne une souris à un serpent.</code> | <code>L'homme donne une souris au serpent.</code> | <code>1.0</code> |
|
675 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
676 |
+
```json
|
677 |
+
{
|
678 |
+
"scale": 20.0,
|
679 |
+
"similarity_fct": "pairwise_cos_sim"
|
680 |
+
}
|
681 |
+
```
|
682 |
+
|
683 |
+
#### multi_stsb_it
|
684 |
+
|
685 |
+
* Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
686 |
+
* Size: 1,500 evaluation samples
|
687 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
688 |
+
* Approximate statistics based on the first 1000 samples:
|
689 |
+
| | sentence1 | sentence2 | score |
|
690 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
691 |
+
| type | string | string | float |
|
692 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 19.05 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.03 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
693 |
+
* Samples:
|
694 |
+
| sentence1 | sentence2 | score |
|
695 |
+
|:------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------|
|
696 |
+
| <code>Un uomo con l'elmetto sta ballando.</code> | <code>Un uomo che indossa un elmetto sta ballando.</code> | <code>1.0</code> |
|
697 |
+
| <code>Un bambino piccolo sta cavalcando un cavallo.</code> | <code>Un bambino sta cavalcando un cavallo.</code> | <code>0.949999988079071</code> |
|
698 |
+
| <code>Un uomo sta dando da mangiare un topo a un serpente.</code> | <code>L'uomo sta dando da mangiare un topo al serpente.</code> | <code>1.0</code> |
|
699 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
700 |
+
```json
|
701 |
+
{
|
702 |
+
"scale": 20.0,
|
703 |
+
"similarity_fct": "pairwise_cos_sim"
|
704 |
+
}
|
705 |
+
```
|
706 |
+
|
707 |
+
#### multi_stsb_nl
|
708 |
+
|
709 |
+
* Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
710 |
+
* Size: 1,500 evaluation samples
|
711 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
712 |
+
* Approximate statistics based on the first 1000 samples:
|
713 |
+
| | sentence1 | sentence2 | score |
|
714 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
715 |
+
| type | string | string | float |
|
716 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 19.12 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 18.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
717 |
+
* Samples:
|
718 |
+
| sentence1 | sentence2 | score |
|
719 |
+
|:-----------------------------------------------------|:-----------------------------------------------------|:-------------------------------|
|
720 |
+
| <code>Een man met een helm is aan het dansen.</code> | <code>Een man met een helm is aan het dansen.</code> | <code>1.0</code> |
|
721 |
+
| <code>Een jong kind rijdt op een paard.</code> | <code>Een kind rijdt op een paard.</code> | <code>0.949999988079071</code> |
|
722 |
+
| <code>Een man voedt een muis aan een slang.</code> | <code>De man voert een muis aan de slang.</code> | <code>1.0</code> |
|
723 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
724 |
+
```json
|
725 |
+
{
|
726 |
+
"scale": 20.0,
|
727 |
+
"similarity_fct": "pairwise_cos_sim"
|
728 |
+
}
|
729 |
+
```
|
730 |
+
|
731 |
+
#### multi_stsb_pl
|
732 |
+
|
733 |
+
* Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
734 |
+
* Size: 1,500 evaluation samples
|
735 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
736 |
+
* Approximate statistics based on the first 1000 samples:
|
737 |
+
| | sentence1 | sentence2 | score |
|
738 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
739 |
+
| type | string | string | float |
|
740 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 21.6 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 21.47 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
741 |
+
* Samples:
|
742 |
+
| sentence1 | sentence2 | score |
|
743 |
+
|:---------------------------------------------------|:---------------------------------------------------|:-------------------------------|
|
744 |
+
| <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>1.0</code> |
|
745 |
+
| <code>Małe dziecko jedzie na koniu.</code> | <code>Dziecko jedzie na koniu.</code> | <code>0.949999988079071</code> |
|
746 |
+
| <code>Człowiek karmi węża myszką.</code> | <code>Ten człowiek karmi węża myszką.</code> | <code>1.0</code> |
|
747 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
748 |
+
```json
|
749 |
+
{
|
750 |
+
"scale": 20.0,
|
751 |
+
"similarity_fct": "pairwise_cos_sim"
|
752 |
+
}
|
753 |
+
```
|
754 |
+
|
755 |
+
#### multi_stsb_pt
|
756 |
+
|
757 |
+
* Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
758 |
+
* Size: 1,500 evaluation samples
|
759 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
760 |
+
* Approximate statistics based on the first 1000 samples:
|
761 |
+
| | sentence1 | sentence2 | score |
|
762 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
763 |
+
| type | string | string | float |
|
764 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 19.26 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.08 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
765 |
+
* Samples:
|
766 |
+
| sentence1 | sentence2 | score |
|
767 |
+
|:------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
|
768 |
+
| <code>Um homem de chapéu duro está a dançar.</code> | <code>Um homem com um capacete está a dançar.</code> | <code>1.0</code> |
|
769 |
+
| <code>Uma criança pequena está a montar a cavalo.</code> | <code>Uma criança está a montar a cavalo.</code> | <code>0.949999988079071</code> |
|
770 |
+
| <code>Um homem está a alimentar um rato a uma cobra.</code> | <code>O homem está a alimentar a cobra com um rato.</code> | <code>1.0</code> |
|
771 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
772 |
+
```json
|
773 |
+
{
|
774 |
+
"scale": 20.0,
|
775 |
+
"similarity_fct": "pairwise_cos_sim"
|
776 |
+
}
|
777 |
+
```
|
778 |
+
|
779 |
+
#### multi_stsb_ru
|
780 |
+
|
781 |
+
* Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
782 |
+
* Size: 1,500 evaluation samples
|
783 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
784 |
+
* Approximate statistics based on the first 1000 samples:
|
785 |
+
| | sentence1 | sentence2 | score |
|
786 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
787 |
+
| type | string | string | float |
|
788 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 20.91 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.95 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
789 |
+
* Samples:
|
790 |
+
| sentence1 | sentence2 | score |
|
791 |
+
|:------------------------------------------------------|:----------------------------------------------|:-------------------------------|
|
792 |
+
| <code>Человек в твердой шляпе танцует.</code> | <code>Мужчина в твердой шляпе танцует.</code> | <code>1.0</code> |
|
793 |
+
| <code>Маленький ребенок едет верхом на лошади.</code> | <code>Ребенок едет на лошади.</code> | <code>0.949999988079071</code> |
|
794 |
+
| <code>Мужчина кормит мышь змее.</code> | <code>Человек кормит змею мышью.</code> | <code>1.0</code> |
|
795 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
796 |
+
```json
|
797 |
+
{
|
798 |
+
"scale": 20.0,
|
799 |
+
"similarity_fct": "pairwise_cos_sim"
|
800 |
+
}
|
801 |
+
```
|
802 |
+
|
803 |
+
#### multi_stsb_zh
|
804 |
+
|
805 |
+
* Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
806 |
+
* Size: 1,500 evaluation samples
|
807 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
808 |
+
* Approximate statistics based on the first 1000 samples:
|
809 |
+
| | sentence1 | sentence2 | score |
|
810 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
811 |
+
| type | string | string | float |
|
812 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 19.81 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.67 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
813 |
+
* Samples:
|
814 |
+
| sentence1 | sentence2 | score |
|
815 |
+
|:---------------------------|:--------------------------|:-------------------------------|
|
816 |
+
| <code>一个戴着硬帽子的人在跳舞。</code> | <code>一个戴着硬帽的人在跳舞。</code> | <code>1.0</code> |
|
817 |
+
| <code>一个小孩子在骑马。</code> | <code>一个孩子在骑马。</code> | <code>0.949999988079071</code> |
|
818 |
+
| <code>一个人正在用老鼠喂蛇。</code> | <code>那人正在给蛇喂老鼠。</code> | <code>1.0</code> |
|
819 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
820 |
+
```json
|
821 |
+
{
|
822 |
+
"scale": 20.0,
|
823 |
+
"similarity_fct": "pairwise_cos_sim"
|
824 |
+
}
|
825 |
+
```
|
826 |
+
|
827 |
+
### Training Hyperparameters
|
828 |
+
#### Non-Default Hyperparameters
|
829 |
+
|
830 |
+
- `eval_strategy`: steps
|
831 |
+
- `per_device_train_batch_size`: 16
|
832 |
+
- `per_device_eval_batch_size`: 16
|
833 |
+
- `num_train_epochs`: 4
|
834 |
+
- `warmup_ratio`: 0.1
|
835 |
+
|
836 |
+
#### All Hyperparameters
|
837 |
+
<details><summary>Click to expand</summary>
|
838 |
+
|
839 |
+
- `overwrite_output_dir`: False
|
840 |
+
- `do_predict`: False
|
841 |
+
- `eval_strategy`: steps
|
842 |
+
- `prediction_loss_only`: True
|
843 |
+
- `per_device_train_batch_size`: 16
|
844 |
+
- `per_device_eval_batch_size`: 16
|
845 |
+
- `per_gpu_train_batch_size`: None
|
846 |
+
- `per_gpu_eval_batch_size`: None
|
847 |
+
- `gradient_accumulation_steps`: 1
|
848 |
+
- `eval_accumulation_steps`: None
|
849 |
+
- `torch_empty_cache_steps`: None
|
850 |
+
- `learning_rate`: 5e-05
|
851 |
+
- `weight_decay`: 0.0
|
852 |
+
- `adam_beta1`: 0.9
|
853 |
+
- `adam_beta2`: 0.999
|
854 |
+
- `adam_epsilon`: 1e-08
|
855 |
+
- `max_grad_norm`: 1.0
|
856 |
+
- `num_train_epochs`: 4
|
857 |
+
- `max_steps`: -1
|
858 |
+
- `lr_scheduler_type`: linear
|
859 |
+
- `lr_scheduler_kwargs`: {}
|
860 |
+
- `warmup_ratio`: 0.1
|
861 |
+
- `warmup_steps`: 0
|
862 |
+
- `log_level`: passive
|
863 |
+
- `log_level_replica`: warning
|
864 |
+
- `log_on_each_node`: True
|
865 |
+
- `logging_nan_inf_filter`: True
|
866 |
+
- `save_safetensors`: True
|
867 |
+
- `save_on_each_node`: False
|
868 |
+
- `save_only_model`: False
|
869 |
+
- `restore_callback_states_from_checkpoint`: False
|
870 |
+
- `no_cuda`: False
|
871 |
+
- `use_cpu`: False
|
872 |
+
- `use_mps_device`: False
|
873 |
+
- `seed`: 42
|
874 |
+
- `data_seed`: None
|
875 |
+
- `jit_mode_eval`: False
|
876 |
+
- `use_ipex`: False
|
877 |
+
- `bf16`: False
|
878 |
+
- `fp16`: False
|
879 |
+
- `fp16_opt_level`: O1
|
880 |
+
- `half_precision_backend`: auto
|
881 |
+
- `bf16_full_eval`: False
|
882 |
+
- `fp16_full_eval`: False
|
883 |
+
- `tf32`: None
|
884 |
+
- `local_rank`: 0
|
885 |
+
- `ddp_backend`: None
|
886 |
+
- `tpu_num_cores`: None
|
887 |
+
- `tpu_metrics_debug`: False
|
888 |
+
- `debug`: []
|
889 |
+
- `dataloader_drop_last`: False
|
890 |
+
- `dataloader_num_workers`: 0
|
891 |
+
- `dataloader_prefetch_factor`: None
|
892 |
+
- `past_index`: -1
|
893 |
+
- `disable_tqdm`: False
|
894 |
+
- `remove_unused_columns`: True
|
895 |
+
- `label_names`: None
|
896 |
+
- `load_best_model_at_end`: False
|
897 |
+
- `ignore_data_skip`: False
|
898 |
+
- `fsdp`: []
|
899 |
+
- `fsdp_min_num_params`: 0
|
900 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
901 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
902 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
903 |
+
- `deepspeed`: None
|
904 |
+
- `label_smoothing_factor`: 0.0
|
905 |
+
- `optim`: adamw_torch
|
906 |
+
- `optim_args`: None
|
907 |
+
- `adafactor`: False
|
908 |
+
- `group_by_length`: False
|
909 |
+
- `length_column_name`: length
|
910 |
+
- `ddp_find_unused_parameters`: None
|
911 |
+
- `ddp_bucket_cap_mb`: None
|
912 |
+
- `ddp_broadcast_buffers`: False
|
913 |
+
- `dataloader_pin_memory`: True
|
914 |
+
- `dataloader_persistent_workers`: False
|
915 |
+
- `skip_memory_metrics`: True
|
916 |
+
- `use_legacy_prediction_loop`: False
|
917 |
+
- `push_to_hub`: False
|
918 |
+
- `resume_from_checkpoint`: None
|
919 |
+
- `hub_model_id`: None
|
920 |
+
- `hub_strategy`: every_save
|
921 |
+
- `hub_private_repo`: None
|
922 |
+
- `hub_always_push`: False
|
923 |
+
- `gradient_checkpointing`: False
|
924 |
+
- `gradient_checkpointing_kwargs`: None
|
925 |
+
- `include_inputs_for_metrics`: False
|
926 |
+
- `include_for_metrics`: []
|
927 |
+
- `eval_do_concat_batches`: True
|
928 |
+
- `fp16_backend`: auto
|
929 |
+
- `push_to_hub_model_id`: None
|
930 |
+
- `push_to_hub_organization`: None
|
931 |
+
- `mp_parameters`:
|
932 |
+
- `auto_find_batch_size`: False
|
933 |
+
- `full_determinism`: False
|
934 |
+
- `torchdynamo`: None
|
935 |
+
- `ray_scope`: last
|
936 |
+
- `ddp_timeout`: 1800
|
937 |
+
- `torch_compile`: False
|
938 |
+
- `torch_compile_backend`: None
|
939 |
+
- `torch_compile_mode`: None
|
940 |
+
- `dispatch_batches`: None
|
941 |
+
- `split_batches`: None
|
942 |
+
- `include_tokens_per_second`: False
|
943 |
+
- `include_num_input_tokens_seen`: False
|
944 |
+
- `neftune_noise_alpha`: None
|
945 |
+
- `optim_target_modules`: None
|
946 |
+
- `batch_eval_metrics`: False
|
947 |
+
- `eval_on_start`: False
|
948 |
+
- `use_liger_kernel`: False
|
949 |
+
- `eval_use_gather_object`: False
|
950 |
+
- `average_tokens_across_devices`: False
|
951 |
+
- `prompts`: None
|
952 |
+
- `batch_sampler`: batch_sampler
|
953 |
+
- `multi_dataset_batch_sampler`: proportional
|
954 |
+
|
955 |
+
</details>
|
956 |
+
|
957 |
+
### Training Logs
|
958 |
+
| Epoch | Step | Training Loss | multi stsb de loss | multi stsb es loss | multi stsb fr loss | multi stsb it loss | multi stsb nl loss | multi stsb pl loss | multi stsb pt loss | multi stsb ru loss | multi stsb zh loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
|
959 |
+
|:-----:|:-----:|:-------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------------:|:------------------------:|
|
960 |
+
| 1.0 | 3240 | 4.6594 | 4.6488 | 4.6520 | 4.6401 | 4.6637 | 4.6435 | 4.6943 | 4.6786 | 4.6902 | 4.6578 | 0.5620 | - |
|
961 |
+
| 2.0 | 6480 | 4.4285 | 4.6860 | 4.6755 | 4.6796 | 4.6655 | 4.6472 | 4.7655 | 4.6910 | 4.7783 | 4.6939 | 0.6592 | - |
|
962 |
+
| 3.0 | 9720 | 4.1541 | 4.9416 | 5.0391 | 4.9025 | 4.9229 | 4.9449 | 5.0618 | 5.0057 | 5.0001 | 4.9986 | 0.6764 | - |
|
963 |
+
| 4.0 | 12960 | 3.8671 | 5.3776 | 5.5136 | 5.3842 | 5.3216 | 5.3303 | 5.4847 | 5.4591 | 5.3623 | 5.4139 | 0.6865 | 0.6617 |
|
964 |
+
|
965 |
+
|
966 |
+
### Framework Versions
|
967 |
+
- Python: 3.11.10
|
968 |
+
- Sentence Transformers: 3.3.1
|
969 |
+
- Transformers: 4.47.1
|
970 |
+
- PyTorch: 2.3.1+cu121
|
971 |
+
- Accelerate: 1.2.1
|
972 |
+
- Datasets: 3.2.0
|
973 |
+
- Tokenizers: 0.21.0
|
974 |
+
|
975 |
+
## Citation
|
976 |
+
|
977 |
+
### BibTeX
|
978 |
+
|
979 |
+
#### Sentence Transformers
|
980 |
+
```bibtex
|
981 |
+
@inproceedings{reimers-2019-sentence-bert,
|
982 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
983 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
984 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
985 |
+
month = "11",
|
986 |
+
year = "2019",
|
987 |
+
publisher = "Association for Computational Linguistics",
|
988 |
+
url = "https://arxiv.org/abs/1908.10084",
|
989 |
+
}
|
990 |
+
```
|
991 |
+
|
992 |
+
#### CoSENTLoss
|
993 |
+
```bibtex
|
994 |
+
@online{kexuefm-8847,
|
995 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
996 |
+
author={Su Jianlin},
|
997 |
+
year={2022},
|
998 |
+
month={Jan},
|
999 |
+
url={https://kexue.fm/archives/8847},
|
1000 |
+
}
|
1001 |
+
```
|
1002 |
+
|
1003 |
+
<!--
|
1004 |
+
## Glossary
|
1005 |
+
|
1006 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1007 |
+
-->
|
1008 |
+
|
1009 |
+
<!--
|
1010 |
+
## Model Card Authors
|
1011 |
+
|
1012 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1013 |
+
-->
|
1014 |
+
|
1015 |
+
<!--
|
1016 |
+
## Model Card Contact
|
1017 |
+
|
1018 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1019 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "RomainDarous/pre_training_original_model",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_hidden_states": true,
|
17 |
+
"output_past": true,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"qa_dropout": 0.1,
|
20 |
+
"seq_classif_dropout": 0.2,
|
21 |
+
"sinusoidal_pos_embds": false,
|
22 |
+
"tie_weights_": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.47.1",
|
25 |
+
"vocab_size": 119547
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bccd9e0fdf7c5ee3abdcc5f853b428f19e7c297d0030089292d638f4dc55fd93
|
3 |
+
size 538947416
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"full_tokenizer_file": null,
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_len": 512,
|
52 |
+
"max_length": 128,
|
53 |
+
"model_max_length": 128,
|
54 |
+
"never_split": null,
|
55 |
+
"pad_to_multiple_of": null,
|
56 |
+
"pad_token": "[PAD]",
|
57 |
+
"pad_token_type_id": 0,
|
58 |
+
"padding_side": "right",
|
59 |
+
"sep_token": "[SEP]",
|
60 |
+
"stride": 0,
|
61 |
+
"strip_accents": null,
|
62 |
+
"tokenize_chinese_chars": true,
|
63 |
+
"tokenizer_class": "DistilBertTokenizer",
|
64 |
+
"truncation_side": "right",
|
65 |
+
"truncation_strategy": "longest_first",
|
66 |
+
"unk_token": "[UNK]"
|
67 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|