File size: 1,892 Bytes
3e9290b
77cd4c4
 
3e9290b
77cd4c4
3e9290b
 
77cd4c4
3e9290b
 
 
77cd4c4
3e9290b
 
 
 
 
77cd4c4
 
3e9290b
 
77cd4c4
3e9290b
 
 
de8644f
3e9290b
 
 
 
 
77cd4c4
3e9290b
77cd4c4
3e9290b
de8644f
 
3e9290b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de8644f
3e9290b
 
 
 
 
 
 
 
 
 
 
 
 
de8644f
 
3e9290b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language:
- en
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- tobiolatunji/afrispeech-200
metrics:
- wer
model-index:
- name: Ru3ll/dsn_afrispeech3
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Afrispeech-200
      type: tobiolatunji/afrispeech-200
      config: all
      split: train
      args: 'config: en, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 23.825127429563658
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Ru3ll/dsn_afrispeech3

This model is a fine-tuned version of [ru3ll/dsn_afrispeech2/whisper-small](https://huggingface.co/ru3ll/dsn_afrispeech2/whisper-small) on the Afrispeech-200 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5952
- Wer: 23.8251

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3.46e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 498
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6516        | 0.5   | 249  | 0.6065          | 23.3294 |
| 0.8152        | 1.0   | 498  | 0.5952          | 23.8251 |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2