File size: 1,892 Bytes
3e9290b 77cd4c4 3e9290b 77cd4c4 3e9290b 77cd4c4 3e9290b 77cd4c4 3e9290b 77cd4c4 3e9290b 77cd4c4 3e9290b de8644f 3e9290b 77cd4c4 3e9290b 77cd4c4 3e9290b de8644f 3e9290b de8644f 3e9290b de8644f 3e9290b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language:
- en
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- tobiolatunji/afrispeech-200
metrics:
- wer
model-index:
- name: Ru3ll/dsn_afrispeech3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Afrispeech-200
type: tobiolatunji/afrispeech-200
config: all
split: train
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 23.825127429563658
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Ru3ll/dsn_afrispeech3
This model is a fine-tuned version of [ru3ll/dsn_afrispeech2/whisper-small](https://huggingface.co/ru3ll/dsn_afrispeech2/whisper-small) on the Afrispeech-200 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5952
- Wer: 23.8251
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.46e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 498
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6516 | 0.5 | 249 | 0.6065 | 23.3294 |
| 0.8152 | 1.0 | 498 | 0.5952 | 23.8251 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|