SIATCN commited on
Commit
add8bac
·
verified ·
1 Parent(s): 7481177

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -4
README.md CHANGED
@@ -1,7 +1,67 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: image-classification
4
  tags:
5
- - medical
6
  - vision
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
 
3
  tags:
 
4
  - vision
5
+ - image-classification
6
+ - medical-imaging
7
+ - tumor-classification
8
+ license: apache-2.0
9
+ base_model: google/vit-base-patch16-224
10
+ model-index:
11
+ - name: vit_tumor_classifier
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: binary-classification
16
+ metrics:
17
+ - name: Accuracy
18
+ type: accuracy
19
+ value: 0.85 # Replace with your actual accuracy
20
+ - name: F1 Score
21
+ type: f1
22
+ value: 0.84 # Replace with your actual F1 score
23
+ ---
24
+
25
+ # Vision Transformer for Tumor Classification
26
+
27
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) for binary tumor classification in medical images.
28
+
29
+ ## Model Details
30
+
31
+ - **Model Type:** Vision Transformer (ViT)
32
+ - **Base Model:** google/vit-base-patch16-224
33
+ - **Task:** Binary Image Classification
34
+ - **Training Data:** Medical image dataset with tumor/non-tumor annotations
35
+ - **Input:** Medical images (224x224 pixels)
36
+ - **Output:** Binary classification (tumor/non-tumor)
37
+ - **Model Size:** 85.8M parameters
38
+ - **Framework:** PyTorch
39
+ - **License:** Apache 2.0
40
+
41
+ ## Intended Use
42
+
43
+ This model is designed for tumor classification in medical imaging. It should be used as part of a larger medical diagnostic system and not as a standalone diagnostic tool.
44
+
45
+ ## Usage
46
+
47
+ ```python
48
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
49
+ from PIL import Image
50
+
51
+ # Load model and processor
52
+ processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier")
53
+ model = AutoModelForImageClassification.from_pretrained("SIATCN/vit_tumor_classifier")
54
+
55
+ # Load and process image
56
+ image = Image.open("path_to_your_image.jpg")
57
+ inputs = processor(image, return_tensors="pt")
58
+
59
+ # Make prediction
60
+ outputs = model(**inputs)
61
+ predictions = outputs.logits.softmax(dim=-1)
62
+ predicted_label = predictions.argmax().item()
63
+ confidence = predictions[0][predicted_label].item()
64
+
65
+ # Get class name
66
+ class_names = ["non-tumor", "tumor"]
67
+ print(f"Predicted: {class_names[predicted_label]} (confidence: {confidence:.2f})")