File size: 26,363 Bytes
4975948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
from typing import Callable, Dict, List, Union
from dataclasses import asdict, dataclass, field


import re
from dataclasses import replace
from typing import Dict
_whitespace_re = re.compile(r"\s+")

from dataclasses import dataclass, field
from typing import List

# from TTS.tts.configs.shared_configs import BaseTTSConfig
# from TTS.tts.models.vits import VitsArgs, VitsAudioConfig

@dataclass
class CharactersConfig():

    characters_class: str = None

    # using BaseVocabulary
    vocab_dict: Dict = None

    # using on BaseCharacters
    pad: str = None
    eos: str = None
    bos: str = None
    blank: str = None
    characters: str = None
    punctuations: str = None
    phonemes: str = None
    is_unique: bool = True  # for backwards compatibility of models trained with char sets with duplicates
    is_sorted: bool = True


@dataclass
class BaseTTSConfig():

    # audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
    # phoneme settings
    use_phonemes: bool = False
    phonemizer: str = None
    phoneme_language: str = None
    compute_input_seq_cache: bool = False
    text_cleaner: str = None
    enable_eos_bos_chars: bool = False
    test_sentences_file: str = ""
    phoneme_cache_path: str = None
    # vocabulary parameters
    characters: CharactersConfig = None
    add_blank: bool = False
    # training params
    batch_group_size: int = 0
    loss_masking: bool = None
    # dataloading
    min_audio_len: int = 1
    max_audio_len: int = float("inf")
    min_text_len: int = 1
    max_text_len: int = float("inf")
    compute_f0: bool = False
    compute_energy: bool = False
    compute_linear_spec: bool = False
    precompute_num_workers: int = 0
    use_noise_augment: bool = False
    start_by_longest: bool = False
    shuffle: bool = False
    drop_last: bool = False
    # dataset
    datasets: str = None
    # optimizer
    optimizer: str = "radam"
    optimizer_params: dict = None
    # scheduler
    lr_scheduler: str = None
    lr_scheduler_params: dict = field(default_factory=lambda: {})
    # testing
    test_sentences: List[str] = field(default_factory=lambda: [])
    # evaluation
    eval_split_max_size: int = None
    eval_split_size: float = 0.01
    # weighted samplers
    use_speaker_weighted_sampler: bool = False
    speaker_weighted_sampler_alpha: float = 1.0
    use_language_weighted_sampler: bool = False
    language_weighted_sampler_alpha: float = 1.0
    use_length_weighted_sampler: bool = False
    length_weighted_sampler_alpha: float = 1.0


@dataclass
class VitsAudioConfig():
    fft_size: int = 1024
    sample_rate: int = 22050
    win_length: int = 1024
    hop_length: int = 256
    num_mels: int = 80
    mel_fmin: int = 0
    mel_fmax: int = None
    
@dataclass
class VitsArgs():
    num_chars: int = 100
    out_channels: int = 513
    spec_segment_size: int = 32
    hidden_channels: int = 192
    hidden_channels_ffn_text_encoder: int = 768
    num_heads_text_encoder: int = 2
    num_layers_text_encoder: int = 6
    kernel_size_text_encoder: int = 3
    dropout_p_text_encoder: float = 0.1
    dropout_p_duration_predictor: float = 0.5
    kernel_size_posterior_encoder: int = 5
    dilation_rate_posterior_encoder: int = 1
    num_layers_posterior_encoder: int = 16
    kernel_size_flow: int = 5
    dilation_rate_flow: int = 1
    num_layers_flow: int = 4
    resblock_type_decoder: str = "1"
    resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11])
    resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
    upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2])
    upsample_initial_channel_decoder: int = 512
    upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
    periods_multi_period_discriminator: List[int] = field(default_factory=lambda: [2, 3, 5, 7, 11])
    use_sdp: bool = True
    noise_scale: float = 1.0
    inference_noise_scale: float = 0.667
    length_scale: float = 1
    noise_scale_dp: float = 1.0
    inference_noise_scale_dp: float = 1.0
    max_inference_len: int = None
    init_discriminator: bool = True
    use_spectral_norm_disriminator: bool = False
    use_speaker_embedding: bool = False
    num_speakers: int = 0
    speakers_file: str = None
    d_vector_file: List[str] = None
    speaker_embedding_channels: int = 256
    use_d_vector_file: bool = False
    d_vector_dim: int = 0
    detach_dp_input: bool = True
    use_language_embedding: bool = False
    embedded_language_dim: int = 4
    num_languages: int = 0
    language_ids_file: str = None
    use_speaker_encoder_as_loss: bool = False
    speaker_encoder_config_path: str = ""
    speaker_encoder_model_path: str = ""
    condition_dp_on_speaker: bool = True
    freeze_encoder: bool = False
    freeze_DP: bool = False
    freeze_PE: bool = False
    freeze_flow_decoder: bool = False
    freeze_waveform_decoder: bool = False
    encoder_sample_rate: int = None
    interpolate_z: bool = True
    reinit_DP: bool = False
    reinit_text_encoder: bool = False
@dataclass
class VitsConfig(BaseTTSConfig):

    model: str = "vits"
    # model specific params
    model_args: VitsArgs = field(default_factory=VitsArgs)
    audio: VitsAudioConfig = field(default_factory=VitsAudioConfig)

    # optimizer
    grad_clip: List[float] = field(default_factory=lambda: [1000, 1000])
    lr_gen: float = 0.0002
    lr_disc: float = 0.0002
    lr_scheduler_gen: str = "ExponentialLR"
    lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
    lr_scheduler_disc: str = "ExponentialLR"
    lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
    scheduler_after_epoch: bool = True
    optimizer: str = "AdamW"
    optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01})

    # loss params
    kl_loss_alpha: float = 1.0
    disc_loss_alpha: float = 1.0
    gen_loss_alpha: float = 1.0
    feat_loss_alpha: float = 1.0
    mel_loss_alpha: float = 45.0
    dur_loss_alpha: float = 1.0
    speaker_encoder_loss_alpha: float = 1.0

    # data loader params
    return_wav: bool = True
    compute_linear_spec: bool = True

    # sampler params
    use_weighted_sampler: bool = False  # TODO: move it to the base config
    weighted_sampler_attrs: dict = field(default_factory=lambda: {})
    weighted_sampler_multipliers: dict = field(default_factory=lambda: {})

    # overrides
    r: int = 1  # DO NOT CHANGE
    add_blank: bool = True

    # testing
    test_sentences: List[List] = field(
        default_factory=lambda: [
            ["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."],
            ["Be a voice, not an echo."],
            ["I'm sorry Dave. I'm afraid I can't do that."],
            ["This cake is great. It's so delicious and moist."],
            ["Prior to November 22, 1963."],
        ]
    )

    # multi-speaker settings
    # use speaker embedding layer
    num_speakers: int = 0
    use_speaker_embedding: bool = False
    speakers_file: str = None
    speaker_embedding_channels: int = 256
    language_ids_file: str = None
    use_language_embedding: bool = False

    # use d-vectors
    use_d_vector_file: bool = False
    d_vector_file: List[str] = None
    d_vector_dim: int = None

    def __post_init__(self):
        pass
        # for key, val in self.model_args.items():
        #     if hasattr(self, key):
        #         self[key] = val





def parse_symbols():
    return {
        "pad": _pad,
        "eos": _eos,
        "bos": _bos,
        "characters": _characters,
        "punctuations": _punctuations,
        "phonemes": _phonemes,
    }


# DEFAULT SET OF GRAPHEMES
_pad = "<PAD>"
_eos = "<EOS>"
_bos = "<BOS>"
_blank = "<BLNK>"  # TODO: check if we need this alongside with PAD
_characters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_punctuations = "!'(),-.:;? "


# DEFAULT SET OF IPA PHONEMES
# Phonemes definition (All IPA characters)
_vowels = "iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻ"
_non_pulmonic_consonants = "ʘɓǀɗǃʄǂɠǁʛ"
_pulmonic_consonants = "pbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟ"
_suprasegmentals = "ˈˌːˑ"
_other_symbols = "ʍwɥʜʢʡɕʑɺɧʲ"
_diacrilics = "ɚ˞ɫ"
_phonemes = _vowels + _non_pulmonic_consonants + _pulmonic_consonants + _suprasegmentals + _other_symbols + _diacrilics


class BaseVocabulary:
    """Base Vocabulary class.

    This class only needs a vocabulary dictionary without specifying the characters.

    Args:
        vocab (Dict): A dictionary of characters and their corresponding indices.
    """

    def __init__(self, vocab: Dict, pad: str = None, blank: str = None, bos: str = None, eos: str = None):
        self.vocab = vocab
        self.pad = pad
        self.blank = blank
        self.bos = bos
        self.eos = eos

    @property
    def pad_id(self) -> int:
        """Return the index of the padding character. If the padding character is not specified, return the length
        of the vocabulary."""
        return self.char_to_id(self.pad) if self.pad else len(self.vocab)

    @property
    def blank_id(self) -> int:
        """Return the index of the blank character. If the blank character is not specified, return the length of
        the vocabulary."""
        return self.char_to_id(self.blank) if self.blank else len(self.vocab)

    @property
    def bos_id(self) -> int:
        """Return the index of the bos character. If the bos character is not specified, return the length of the
        vocabulary."""
        return self.char_to_id(self.bos) if self.bos else len(self.vocab)

    @property
    def eos_id(self) -> int:
        """Return the index of the eos character. If the eos character is not specified, return the length of the
        vocabulary."""
        return self.char_to_id(self.eos) if self.eos else len(self.vocab)

    @property
    def vocab(self):
        """Return the vocabulary dictionary."""
        return self._vocab

    @vocab.setter
    def vocab(self, vocab):
        """Set the vocabulary dictionary and character mapping dictionaries."""
        self._vocab, self._char_to_id, self._id_to_char = None, None, None
        if vocab is not None:
            self._vocab = vocab
            self._char_to_id = {char: idx for idx, char in enumerate(self._vocab)}
            self._id_to_char = {
                idx: char for idx, char in enumerate(self._vocab)  # pylint: disable=unnecessary-comprehension
            }

    @staticmethod
    def init_from_config(config, **kwargs):
        """Initialize from the given config."""
        if config.characters is not None and "vocab_dict" in config.characters and config.characters.vocab_dict:
            return (
                BaseVocabulary(
                    config.characters.vocab_dict,
                    config.characters.pad,
                    config.characters.blank,
                    config.characters.bos,
                    config.characters.eos,
                ),
                config,
            )
        return BaseVocabulary(**kwargs), config

    def to_config(self):
        return CharactersConfig(
            vocab_dict=self._vocab,
            pad=self.pad,
            eos=self.eos,
            bos=self.bos,
            blank=self.blank,
            is_unique=False,
            is_sorted=False,
        )

    @property
    def num_chars(self):
        """Return number of tokens in the vocabulary."""
        return len(self._vocab)

    def char_to_id(self, char: str) -> int:
        """Map a character to an token ID."""
        try:
            return self._char_to_id[char]
        except KeyError as e:
            raise KeyError(f" [!] {repr(char)} is not in the vocabulary.") from e

    def id_to_char(self, idx: int) -> str:
        """Map an token ID to a character."""
        return self._id_to_char[idx]


class BaseCharacters:


    def __init__(
        self,
        characters: str = None,
        punctuations: str = None,
        pad: str = None,
        eos: str = None,
        bos: str = None,
        blank: str = None,
        is_unique: bool = False,
        is_sorted: bool = True,
    ) -> None:
        self._characters = characters
        self._punctuations = punctuations
        self._pad = pad
        self._eos = eos
        self._bos = bos
        self._blank = blank
        self.is_unique = is_unique
        self.is_sorted = is_sorted
        self._create_vocab()

    @property
    def pad_id(self) -> int:
        return self.char_to_id(self.pad) if self.pad else len(self.vocab)

    @property
    def blank_id(self) -> int:
        return self.char_to_id(self.blank) if self.blank else len(self.vocab)

    @property
    def eos_id(self) -> int:
        return self.char_to_id(self.eos) if self.eos else len(self.vocab)

    @property
    def bos_id(self) -> int:
        return self.char_to_id(self.bos) if self.bos else len(self.vocab)

    @property
    def characters(self):
        return self._characters

    @characters.setter
    def characters(self, characters):
        self._characters = characters
        self._create_vocab()

    @property
    def punctuations(self):
        return self._punctuations

    @punctuations.setter
    def punctuations(self, punctuations):
        self._punctuations = punctuations
        self._create_vocab()

    @property
    def pad(self):
        return self._pad

    @pad.setter
    def pad(self, pad):
        self._pad = pad
        self._create_vocab()

    @property
    def eos(self):
        return self._eos

    @eos.setter
    def eos(self, eos):
        self._eos = eos
        self._create_vocab()

    @property
    def bos(self):
        return self._bos

    @bos.setter
    def bos(self, bos):
        self._bos = bos
        self._create_vocab()

    @property
    def blank(self):
        return self._blank

    @blank.setter
    def blank(self, blank):
        self._blank = blank
        self._create_vocab()

    @property
    def vocab(self):
        return self._vocab

    @vocab.setter
    def vocab(self, vocab):
        self._vocab = vocab
        self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)}
        self._id_to_char = {
            idx: char for idx, char in enumerate(self.vocab)  # pylint: disable=unnecessary-comprehension
        }

    @property
    def num_chars(self):
        return len(self._vocab)

    def _create_vocab(self):
        _vocab = self._characters
        if self.is_unique:
            _vocab = list(set(_vocab))
        if self.is_sorted:
            _vocab = sorted(_vocab)
        _vocab = list(_vocab)
        _vocab = [self._blank] + _vocab if self._blank is not None and len(self._blank) > 0 else _vocab
        _vocab = [self._bos] + _vocab if self._bos is not None and len(self._bos) > 0 else _vocab
        _vocab = [self._eos] + _vocab if self._eos is not None and len(self._eos) > 0 else _vocab
        _vocab = [self._pad] + _vocab if self._pad is not None and len(self._pad) > 0 else _vocab
        self.vocab = _vocab + list(self._punctuations)
        if self.is_unique:
            duplicates = {x for x in self.vocab if self.vocab.count(x) > 1}
            assert (
                len(self.vocab) == len(self._char_to_id) == len(self._id_to_char)
            ), f" [!] There are duplicate characters in the character set. {duplicates}"

    def char_to_id(self, char: str) -> int:
        try:
            return self._char_to_id[char]
        except KeyError as e:
            raise KeyError(f" [!] {repr(char)} is not in the vocabulary.") from e

    def id_to_char(self, idx: int) -> str:
        return self._id_to_char[idx]

    def print_log(self, level: int = 0):
        """
        Prints the vocabulary in a nice format.
        """
        indent = "\t" * level
        print(f"{indent}| > Characters: {self._characters}")
        print(f"{indent}| > Punctuations: {self._punctuations}")
        print(f"{indent}| > Pad: {self._pad}")
        print(f"{indent}| > EOS: {self._eos}")
        print(f"{indent}| > BOS: {self._bos}")
        print(f"{indent}| > Blank: {self._blank}")
        print(f"{indent}| > Vocab: {self.vocab}")
        print(f"{indent}| > Num chars: {self.num_chars}")

    @staticmethod
    def init_from_config(config: "Coqpit"):  # pylint: disable=unused-argument
        """Init your character class from a config.

        Implement this method for your subclass.
        """
        # use character set from config
        if config.characters is not None:
            return BaseCharacters(**config.characters), config
        # return default character set
        characters = BaseCharacters()
        new_config = replace(config, characters=characters.to_config())
        return characters, new_config

    def to_config(self) -> "CharactersConfig":
        return CharactersConfig(
            characters=self._characters,
            punctuations=self._punctuations,
            pad=self._pad,
            eos=self._eos,
            bos=self._bos,
            blank=self._blank,
            is_unique=self.is_unique,
            is_sorted=self.is_sorted,
        )


class IPAPhonemes(BaseCharacters):
 

    def __init__(
        self,
        characters: str = _phonemes,
        punctuations: str = _punctuations,
        pad: str = _pad,
        eos: str = _eos,
        bos: str = _bos,
        blank: str = _blank,
        is_unique: bool = False,
        is_sorted: bool = True,
    ) -> None:
        super().__init__(characters, punctuations, pad, eos, bos, blank, is_unique, is_sorted)

    @staticmethod
    def init_from_config(config: "Coqpit"):
        """Init a IPAPhonemes object from a model config

        If characters are not defined in the config, it will be set to the default characters and the config
        will be updated.
        """
        # band-aid for compatibility with old models
        if "characters" in config and config.characters is not None:
            if "phonemes" in config.characters and config.characters.phonemes is not None:
                config.characters["characters"] = config.characters["phonemes"]
            return (
                IPAPhonemes(
                    characters=config.characters["characters"],
                    punctuations=config.characters["punctuations"],
                    pad=config.characters["pad"],
                    eos=config.characters["eos"],
                    bos=config.characters["bos"],
                    blank=config.characters["blank"],
                    is_unique=config.characters["is_unique"],
                    is_sorted=config.characters["is_sorted"],
                ),
                config,
            )
        # use character set from config
        if config.characters is not None:
            return IPAPhonemes(**config.characters), config
        # return default character set
        characters = IPAPhonemes()
        new_config = replace(config, characters=characters.to_config())
        return characters, new_config


class Graphemes(BaseCharacters):
 

    def __init__(
        self,
        characters: str = _characters,
        punctuations: str = _punctuations,
        pad: str = _pad,
        eos: str = _eos,
        bos: str = _bos,
        blank: str = _blank,
        is_unique: bool = False,
        is_sorted: bool = True,
    ) -> None:
        super().__init__(characters, punctuations, pad, eos, bos, blank, is_unique, is_sorted)

    @staticmethod
    def init_from_config(config: "Coqpit"):
        """Init a Graphemes object from a model config

        If characters are not defined in the config, it will be set to the default characters and the config
        will be updated.
        """
        if config.characters is not None:
            # band-aid for compatibility with old models
            if "phonemes" in config.characters:
                return (
                    Graphemes(
                        characters=config.characters["characters"],
                        punctuations=config.characters["punctuations"],
                        pad=config.characters["pad"],
                        eos=config.characters["eos"],
                        bos=config.characters["bos"],
                        blank=config.characters["blank"],
                        is_unique=config.characters["is_unique"],
                        is_sorted=config.characters["is_sorted"],
                    ),
                    config,
                )
            return Graphemes(**config.characters), config
        characters = Graphemes()
        new_config = replace(config, characters=characters.to_config())
        return characters, new_config


if __name__ == "__main__":
    gr = Graphemes()
    ph = IPAPhonemes()
    gr.print_log()
    ph.print_log()


class VitsCharacters(BaseCharacters):
    """Characters class for VITs model for compatibility with pre-trained models"""

    def __init__(
        self,
        graphemes: str = _characters,
        punctuations: str = _punctuations,
        pad: str = _pad,
        ipa_characters: str = _phonemes,
    ) -> None:
        if ipa_characters is not None:
            graphemes += ipa_characters
        super().__init__(graphemes, punctuations, pad, None, None, "<BLNK>", is_unique=False, is_sorted=True)

    def _create_vocab(self):
        self._vocab = [self._pad] + list(self._punctuations) + list(self._characters) + [self._blank]
        self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)}
        # pylint: disable=unnecessary-comprehension
        self._id_to_char = {idx: char for idx, char in enumerate(self.vocab)}

    @staticmethod
    def init_from_config(config):
        _pad = config.characters.pad
        _punctuations = config.characters.punctuations
        _letters = config.characters.characters
        _letters_ipa = config.characters.phonemes
        return (
            VitsCharacters(graphemes=_letters, ipa_characters=_letters_ipa, punctuations=_punctuations, pad=_pad),
            config,
        )

    def to_config(self) -> "CharactersConfig":
        return CharactersConfig(
            characters=self._characters,
            punctuations=self._punctuations,
            pad=self._pad,
            eos=None,
            bos=None,
            blank=self._blank,
            is_unique=False,
            is_sorted=True,
        )
        
class TTSTokenizer:
    def __init__(
        self,
        text_cleaner: Callable = None,
        characters: "BaseCharacters" = None,
    ):
        self.text_cleaner = text_cleaner
        self.characters = characters
        self.not_found_characters = []

    @property
    def characters(self):
        return self._characters

    @characters.setter
    def characters(self, new_characters):
        self._characters = new_characters
        self.pad_id = self.characters.char_to_id(self.characters.pad) if self.characters.pad else None
        self.blank_id = self.characters.char_to_id(self.characters.blank) if self.characters.blank else None

    def encode(self, text: str) -> List[int]:
        """Encodes a string of text as a sequence of IDs."""
        token_ids = []
        for char in text:
            try:
                idx = self.characters.char_to_id(char)
                token_ids.append(idx)
            except KeyError:
                # discard but store not found characters
                if char not in self.not_found_characters:
                    self.not_found_characters.append(char)
                    print(text)
                    print(f" [!] Character {repr(char)} not found in the vocabulary. Discarding it.")
        return token_ids

    def text_to_ids(self, text: str, language: str = None) -> List[int]:  # pylint: disable=unused-argument
        text = self.text_cleaner(text)
        text = self.encode(text)
        text = self.intersperse_blank_char(text, True)
        return text

    def pad_with_bos_eos(self, char_sequence: List[str]):
        """Pads a sequence with the special BOS and EOS characters."""
        return [self.characters.bos_id] + list(char_sequence) + [self.characters.eos_id]

    def intersperse_blank_char(self, char_sequence: List[str], use_blank_char: bool = False):
        """Intersperses the blank character between characters in a sequence.

        Use the ```blank``` character if defined else use the ```pad``` character.
        """
        char_to_use = self.characters.blank_id if use_blank_char else self.characters.pad
        result = [char_to_use] * (len(char_sequence) * 2 + 1)
        result[1::2] = char_sequence
        return result

    @staticmethod
    def init_from_config(config: "Coqpit", characters: "BaseCharacters" = None):
        text_cleaner = multilingual_cleaners
        CharactersClass = VitsCharacters
        characters, new_config = CharactersClass.init_from_config(config)
        # new_config.characters.characters_class = get_import_path(characters)
        new_config.characters.characters_class = VitsCharacters
        return (
            TTSTokenizer(text_cleaner, characters),new_config)


def multilingual_cleaners(text):
    """Pipeline for multilingual text"""
    text = lowercase(text)
    text = replace_symbols(text, lang=None)
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text

def lowercase(text):
    return text.lower()

def collapse_whitespace(text):
    return re.sub(_whitespace_re, " ", text).strip()

def replace_symbols(text, lang="en"):

    text = text.replace(";", ",")
    text = text.replace("-", " ") if lang != "ca" else text.replace("-", "")
    text = text.replace(":", ",")
    if lang == "en":
        text = text.replace("&", " and ")
    elif lang == "fr":
        text = text.replace("&", " et ")
    elif lang == "pt":
        text = text.replace("&", " e ")
    elif lang == "ca":
        text = text.replace("&", " i ")
        text = text.replace("'", "")
    return text

def remove_aux_symbols(text):
    text = re.sub(r"[\<\>\(\)\[\]\"]+", "", text)
    return text