File size: 26,363 Bytes
4975948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
from typing import Callable, Dict, List, Union
from dataclasses import asdict, dataclass, field
import re
from dataclasses import replace
from typing import Dict
_whitespace_re = re.compile(r"\s+")
from dataclasses import dataclass, field
from typing import List
# from TTS.tts.configs.shared_configs import BaseTTSConfig
# from TTS.tts.models.vits import VitsArgs, VitsAudioConfig
@dataclass
class CharactersConfig():
characters_class: str = None
# using BaseVocabulary
vocab_dict: Dict = None
# using on BaseCharacters
pad: str = None
eos: str = None
bos: str = None
blank: str = None
characters: str = None
punctuations: str = None
phonemes: str = None
is_unique: bool = True # for backwards compatibility of models trained with char sets with duplicates
is_sorted: bool = True
@dataclass
class BaseTTSConfig():
# audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
# phoneme settings
use_phonemes: bool = False
phonemizer: str = None
phoneme_language: str = None
compute_input_seq_cache: bool = False
text_cleaner: str = None
enable_eos_bos_chars: bool = False
test_sentences_file: str = ""
phoneme_cache_path: str = None
# vocabulary parameters
characters: CharactersConfig = None
add_blank: bool = False
# training params
batch_group_size: int = 0
loss_masking: bool = None
# dataloading
min_audio_len: int = 1
max_audio_len: int = float("inf")
min_text_len: int = 1
max_text_len: int = float("inf")
compute_f0: bool = False
compute_energy: bool = False
compute_linear_spec: bool = False
precompute_num_workers: int = 0
use_noise_augment: bool = False
start_by_longest: bool = False
shuffle: bool = False
drop_last: bool = False
# dataset
datasets: str = None
# optimizer
optimizer: str = "radam"
optimizer_params: dict = None
# scheduler
lr_scheduler: str = None
lr_scheduler_params: dict = field(default_factory=lambda: {})
# testing
test_sentences: List[str] = field(default_factory=lambda: [])
# evaluation
eval_split_max_size: int = None
eval_split_size: float = 0.01
# weighted samplers
use_speaker_weighted_sampler: bool = False
speaker_weighted_sampler_alpha: float = 1.0
use_language_weighted_sampler: bool = False
language_weighted_sampler_alpha: float = 1.0
use_length_weighted_sampler: bool = False
length_weighted_sampler_alpha: float = 1.0
@dataclass
class VitsAudioConfig():
fft_size: int = 1024
sample_rate: int = 22050
win_length: int = 1024
hop_length: int = 256
num_mels: int = 80
mel_fmin: int = 0
mel_fmax: int = None
@dataclass
class VitsArgs():
num_chars: int = 100
out_channels: int = 513
spec_segment_size: int = 32
hidden_channels: int = 192
hidden_channels_ffn_text_encoder: int = 768
num_heads_text_encoder: int = 2
num_layers_text_encoder: int = 6
kernel_size_text_encoder: int = 3
dropout_p_text_encoder: float = 0.1
dropout_p_duration_predictor: float = 0.5
kernel_size_posterior_encoder: int = 5
dilation_rate_posterior_encoder: int = 1
num_layers_posterior_encoder: int = 16
kernel_size_flow: int = 5
dilation_rate_flow: int = 1
num_layers_flow: int = 4
resblock_type_decoder: str = "1"
resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11])
resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2])
upsample_initial_channel_decoder: int = 512
upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
periods_multi_period_discriminator: List[int] = field(default_factory=lambda: [2, 3, 5, 7, 11])
use_sdp: bool = True
noise_scale: float = 1.0
inference_noise_scale: float = 0.667
length_scale: float = 1
noise_scale_dp: float = 1.0
inference_noise_scale_dp: float = 1.0
max_inference_len: int = None
init_discriminator: bool = True
use_spectral_norm_disriminator: bool = False
use_speaker_embedding: bool = False
num_speakers: int = 0
speakers_file: str = None
d_vector_file: List[str] = None
speaker_embedding_channels: int = 256
use_d_vector_file: bool = False
d_vector_dim: int = 0
detach_dp_input: bool = True
use_language_embedding: bool = False
embedded_language_dim: int = 4
num_languages: int = 0
language_ids_file: str = None
use_speaker_encoder_as_loss: bool = False
speaker_encoder_config_path: str = ""
speaker_encoder_model_path: str = ""
condition_dp_on_speaker: bool = True
freeze_encoder: bool = False
freeze_DP: bool = False
freeze_PE: bool = False
freeze_flow_decoder: bool = False
freeze_waveform_decoder: bool = False
encoder_sample_rate: int = None
interpolate_z: bool = True
reinit_DP: bool = False
reinit_text_encoder: bool = False
@dataclass
class VitsConfig(BaseTTSConfig):
model: str = "vits"
# model specific params
model_args: VitsArgs = field(default_factory=VitsArgs)
audio: VitsAudioConfig = field(default_factory=VitsAudioConfig)
# optimizer
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000])
lr_gen: float = 0.0002
lr_disc: float = 0.0002
lr_scheduler_gen: str = "ExponentialLR"
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
lr_scheduler_disc: str = "ExponentialLR"
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
scheduler_after_epoch: bool = True
optimizer: str = "AdamW"
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01})
# loss params
kl_loss_alpha: float = 1.0
disc_loss_alpha: float = 1.0
gen_loss_alpha: float = 1.0
feat_loss_alpha: float = 1.0
mel_loss_alpha: float = 45.0
dur_loss_alpha: float = 1.0
speaker_encoder_loss_alpha: float = 1.0
# data loader params
return_wav: bool = True
compute_linear_spec: bool = True
# sampler params
use_weighted_sampler: bool = False # TODO: move it to the base config
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
# overrides
r: int = 1 # DO NOT CHANGE
add_blank: bool = True
# testing
test_sentences: List[List] = field(
default_factory=lambda: [
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."],
["Be a voice, not an echo."],
["I'm sorry Dave. I'm afraid I can't do that."],
["This cake is great. It's so delicious and moist."],
["Prior to November 22, 1963."],
]
)
# multi-speaker settings
# use speaker embedding layer
num_speakers: int = 0
use_speaker_embedding: bool = False
speakers_file: str = None
speaker_embedding_channels: int = 256
language_ids_file: str = None
use_language_embedding: bool = False
# use d-vectors
use_d_vector_file: bool = False
d_vector_file: List[str] = None
d_vector_dim: int = None
def __post_init__(self):
pass
# for key, val in self.model_args.items():
# if hasattr(self, key):
# self[key] = val
def parse_symbols():
return {
"pad": _pad,
"eos": _eos,
"bos": _bos,
"characters": _characters,
"punctuations": _punctuations,
"phonemes": _phonemes,
}
# DEFAULT SET OF GRAPHEMES
_pad = "<PAD>"
_eos = "<EOS>"
_bos = "<BOS>"
_blank = "<BLNK>" # TODO: check if we need this alongside with PAD
_characters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_punctuations = "!'(),-.:;? "
# DEFAULT SET OF IPA PHONEMES
# Phonemes definition (All IPA characters)
_vowels = "iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻ"
_non_pulmonic_consonants = "ʘɓǀɗǃʄǂɠǁʛ"
_pulmonic_consonants = "pbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟ"
_suprasegmentals = "ˈˌːˑ"
_other_symbols = "ʍwɥʜʢʡɕʑɺɧʲ"
_diacrilics = "ɚ˞ɫ"
_phonemes = _vowels + _non_pulmonic_consonants + _pulmonic_consonants + _suprasegmentals + _other_symbols + _diacrilics
class BaseVocabulary:
"""Base Vocabulary class.
This class only needs a vocabulary dictionary without specifying the characters.
Args:
vocab (Dict): A dictionary of characters and their corresponding indices.
"""
def __init__(self, vocab: Dict, pad: str = None, blank: str = None, bos: str = None, eos: str = None):
self.vocab = vocab
self.pad = pad
self.blank = blank
self.bos = bos
self.eos = eos
@property
def pad_id(self) -> int:
"""Return the index of the padding character. If the padding character is not specified, return the length
of the vocabulary."""
return self.char_to_id(self.pad) if self.pad else len(self.vocab)
@property
def blank_id(self) -> int:
"""Return the index of the blank character. If the blank character is not specified, return the length of
the vocabulary."""
return self.char_to_id(self.blank) if self.blank else len(self.vocab)
@property
def bos_id(self) -> int:
"""Return the index of the bos character. If the bos character is not specified, return the length of the
vocabulary."""
return self.char_to_id(self.bos) if self.bos else len(self.vocab)
@property
def eos_id(self) -> int:
"""Return the index of the eos character. If the eos character is not specified, return the length of the
vocabulary."""
return self.char_to_id(self.eos) if self.eos else len(self.vocab)
@property
def vocab(self):
"""Return the vocabulary dictionary."""
return self._vocab
@vocab.setter
def vocab(self, vocab):
"""Set the vocabulary dictionary and character mapping dictionaries."""
self._vocab, self._char_to_id, self._id_to_char = None, None, None
if vocab is not None:
self._vocab = vocab
self._char_to_id = {char: idx for idx, char in enumerate(self._vocab)}
self._id_to_char = {
idx: char for idx, char in enumerate(self._vocab) # pylint: disable=unnecessary-comprehension
}
@staticmethod
def init_from_config(config, **kwargs):
"""Initialize from the given config."""
if config.characters is not None and "vocab_dict" in config.characters and config.characters.vocab_dict:
return (
BaseVocabulary(
config.characters.vocab_dict,
config.characters.pad,
config.characters.blank,
config.characters.bos,
config.characters.eos,
),
config,
)
return BaseVocabulary(**kwargs), config
def to_config(self):
return CharactersConfig(
vocab_dict=self._vocab,
pad=self.pad,
eos=self.eos,
bos=self.bos,
blank=self.blank,
is_unique=False,
is_sorted=False,
)
@property
def num_chars(self):
"""Return number of tokens in the vocabulary."""
return len(self._vocab)
def char_to_id(self, char: str) -> int:
"""Map a character to an token ID."""
try:
return self._char_to_id[char]
except KeyError as e:
raise KeyError(f" [!] {repr(char)} is not in the vocabulary.") from e
def id_to_char(self, idx: int) -> str:
"""Map an token ID to a character."""
return self._id_to_char[idx]
class BaseCharacters:
def __init__(
self,
characters: str = None,
punctuations: str = None,
pad: str = None,
eos: str = None,
bos: str = None,
blank: str = None,
is_unique: bool = False,
is_sorted: bool = True,
) -> None:
self._characters = characters
self._punctuations = punctuations
self._pad = pad
self._eos = eos
self._bos = bos
self._blank = blank
self.is_unique = is_unique
self.is_sorted = is_sorted
self._create_vocab()
@property
def pad_id(self) -> int:
return self.char_to_id(self.pad) if self.pad else len(self.vocab)
@property
def blank_id(self) -> int:
return self.char_to_id(self.blank) if self.blank else len(self.vocab)
@property
def eos_id(self) -> int:
return self.char_to_id(self.eos) if self.eos else len(self.vocab)
@property
def bos_id(self) -> int:
return self.char_to_id(self.bos) if self.bos else len(self.vocab)
@property
def characters(self):
return self._characters
@characters.setter
def characters(self, characters):
self._characters = characters
self._create_vocab()
@property
def punctuations(self):
return self._punctuations
@punctuations.setter
def punctuations(self, punctuations):
self._punctuations = punctuations
self._create_vocab()
@property
def pad(self):
return self._pad
@pad.setter
def pad(self, pad):
self._pad = pad
self._create_vocab()
@property
def eos(self):
return self._eos
@eos.setter
def eos(self, eos):
self._eos = eos
self._create_vocab()
@property
def bos(self):
return self._bos
@bos.setter
def bos(self, bos):
self._bos = bos
self._create_vocab()
@property
def blank(self):
return self._blank
@blank.setter
def blank(self, blank):
self._blank = blank
self._create_vocab()
@property
def vocab(self):
return self._vocab
@vocab.setter
def vocab(self, vocab):
self._vocab = vocab
self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)}
self._id_to_char = {
idx: char for idx, char in enumerate(self.vocab) # pylint: disable=unnecessary-comprehension
}
@property
def num_chars(self):
return len(self._vocab)
def _create_vocab(self):
_vocab = self._characters
if self.is_unique:
_vocab = list(set(_vocab))
if self.is_sorted:
_vocab = sorted(_vocab)
_vocab = list(_vocab)
_vocab = [self._blank] + _vocab if self._blank is not None and len(self._blank) > 0 else _vocab
_vocab = [self._bos] + _vocab if self._bos is not None and len(self._bos) > 0 else _vocab
_vocab = [self._eos] + _vocab if self._eos is not None and len(self._eos) > 0 else _vocab
_vocab = [self._pad] + _vocab if self._pad is not None and len(self._pad) > 0 else _vocab
self.vocab = _vocab + list(self._punctuations)
if self.is_unique:
duplicates = {x for x in self.vocab if self.vocab.count(x) > 1}
assert (
len(self.vocab) == len(self._char_to_id) == len(self._id_to_char)
), f" [!] There are duplicate characters in the character set. {duplicates}"
def char_to_id(self, char: str) -> int:
try:
return self._char_to_id[char]
except KeyError as e:
raise KeyError(f" [!] {repr(char)} is not in the vocabulary.") from e
def id_to_char(self, idx: int) -> str:
return self._id_to_char[idx]
def print_log(self, level: int = 0):
"""
Prints the vocabulary in a nice format.
"""
indent = "\t" * level
print(f"{indent}| > Characters: {self._characters}")
print(f"{indent}| > Punctuations: {self._punctuations}")
print(f"{indent}| > Pad: {self._pad}")
print(f"{indent}| > EOS: {self._eos}")
print(f"{indent}| > BOS: {self._bos}")
print(f"{indent}| > Blank: {self._blank}")
print(f"{indent}| > Vocab: {self.vocab}")
print(f"{indent}| > Num chars: {self.num_chars}")
@staticmethod
def init_from_config(config: "Coqpit"): # pylint: disable=unused-argument
"""Init your character class from a config.
Implement this method for your subclass.
"""
# use character set from config
if config.characters is not None:
return BaseCharacters(**config.characters), config
# return default character set
characters = BaseCharacters()
new_config = replace(config, characters=characters.to_config())
return characters, new_config
def to_config(self) -> "CharactersConfig":
return CharactersConfig(
characters=self._characters,
punctuations=self._punctuations,
pad=self._pad,
eos=self._eos,
bos=self._bos,
blank=self._blank,
is_unique=self.is_unique,
is_sorted=self.is_sorted,
)
class IPAPhonemes(BaseCharacters):
def __init__(
self,
characters: str = _phonemes,
punctuations: str = _punctuations,
pad: str = _pad,
eos: str = _eos,
bos: str = _bos,
blank: str = _blank,
is_unique: bool = False,
is_sorted: bool = True,
) -> None:
super().__init__(characters, punctuations, pad, eos, bos, blank, is_unique, is_sorted)
@staticmethod
def init_from_config(config: "Coqpit"):
"""Init a IPAPhonemes object from a model config
If characters are not defined in the config, it will be set to the default characters and the config
will be updated.
"""
# band-aid for compatibility with old models
if "characters" in config and config.characters is not None:
if "phonemes" in config.characters and config.characters.phonemes is not None:
config.characters["characters"] = config.characters["phonemes"]
return (
IPAPhonemes(
characters=config.characters["characters"],
punctuations=config.characters["punctuations"],
pad=config.characters["pad"],
eos=config.characters["eos"],
bos=config.characters["bos"],
blank=config.characters["blank"],
is_unique=config.characters["is_unique"],
is_sorted=config.characters["is_sorted"],
),
config,
)
# use character set from config
if config.characters is not None:
return IPAPhonemes(**config.characters), config
# return default character set
characters = IPAPhonemes()
new_config = replace(config, characters=characters.to_config())
return characters, new_config
class Graphemes(BaseCharacters):
def __init__(
self,
characters: str = _characters,
punctuations: str = _punctuations,
pad: str = _pad,
eos: str = _eos,
bos: str = _bos,
blank: str = _blank,
is_unique: bool = False,
is_sorted: bool = True,
) -> None:
super().__init__(characters, punctuations, pad, eos, bos, blank, is_unique, is_sorted)
@staticmethod
def init_from_config(config: "Coqpit"):
"""Init a Graphemes object from a model config
If characters are not defined in the config, it will be set to the default characters and the config
will be updated.
"""
if config.characters is not None:
# band-aid for compatibility with old models
if "phonemes" in config.characters:
return (
Graphemes(
characters=config.characters["characters"],
punctuations=config.characters["punctuations"],
pad=config.characters["pad"],
eos=config.characters["eos"],
bos=config.characters["bos"],
blank=config.characters["blank"],
is_unique=config.characters["is_unique"],
is_sorted=config.characters["is_sorted"],
),
config,
)
return Graphemes(**config.characters), config
characters = Graphemes()
new_config = replace(config, characters=characters.to_config())
return characters, new_config
if __name__ == "__main__":
gr = Graphemes()
ph = IPAPhonemes()
gr.print_log()
ph.print_log()
class VitsCharacters(BaseCharacters):
"""Characters class for VITs model for compatibility with pre-trained models"""
def __init__(
self,
graphemes: str = _characters,
punctuations: str = _punctuations,
pad: str = _pad,
ipa_characters: str = _phonemes,
) -> None:
if ipa_characters is not None:
graphemes += ipa_characters
super().__init__(graphemes, punctuations, pad, None, None, "<BLNK>", is_unique=False, is_sorted=True)
def _create_vocab(self):
self._vocab = [self._pad] + list(self._punctuations) + list(self._characters) + [self._blank]
self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)}
# pylint: disable=unnecessary-comprehension
self._id_to_char = {idx: char for idx, char in enumerate(self.vocab)}
@staticmethod
def init_from_config(config):
_pad = config.characters.pad
_punctuations = config.characters.punctuations
_letters = config.characters.characters
_letters_ipa = config.characters.phonemes
return (
VitsCharacters(graphemes=_letters, ipa_characters=_letters_ipa, punctuations=_punctuations, pad=_pad),
config,
)
def to_config(self) -> "CharactersConfig":
return CharactersConfig(
characters=self._characters,
punctuations=self._punctuations,
pad=self._pad,
eos=None,
bos=None,
blank=self._blank,
is_unique=False,
is_sorted=True,
)
class TTSTokenizer:
def __init__(
self,
text_cleaner: Callable = None,
characters: "BaseCharacters" = None,
):
self.text_cleaner = text_cleaner
self.characters = characters
self.not_found_characters = []
@property
def characters(self):
return self._characters
@characters.setter
def characters(self, new_characters):
self._characters = new_characters
self.pad_id = self.characters.char_to_id(self.characters.pad) if self.characters.pad else None
self.blank_id = self.characters.char_to_id(self.characters.blank) if self.characters.blank else None
def encode(self, text: str) -> List[int]:
"""Encodes a string of text as a sequence of IDs."""
token_ids = []
for char in text:
try:
idx = self.characters.char_to_id(char)
token_ids.append(idx)
except KeyError:
# discard but store not found characters
if char not in self.not_found_characters:
self.not_found_characters.append(char)
print(text)
print(f" [!] Character {repr(char)} not found in the vocabulary. Discarding it.")
return token_ids
def text_to_ids(self, text: str, language: str = None) -> List[int]: # pylint: disable=unused-argument
text = self.text_cleaner(text)
text = self.encode(text)
text = self.intersperse_blank_char(text, True)
return text
def pad_with_bos_eos(self, char_sequence: List[str]):
"""Pads a sequence with the special BOS and EOS characters."""
return [self.characters.bos_id] + list(char_sequence) + [self.characters.eos_id]
def intersperse_blank_char(self, char_sequence: List[str], use_blank_char: bool = False):
"""Intersperses the blank character between characters in a sequence.
Use the ```blank``` character if defined else use the ```pad``` character.
"""
char_to_use = self.characters.blank_id if use_blank_char else self.characters.pad
result = [char_to_use] * (len(char_sequence) * 2 + 1)
result[1::2] = char_sequence
return result
@staticmethod
def init_from_config(config: "Coqpit", characters: "BaseCharacters" = None):
text_cleaner = multilingual_cleaners
CharactersClass = VitsCharacters
characters, new_config = CharactersClass.init_from_config(config)
# new_config.characters.characters_class = get_import_path(characters)
new_config.characters.characters_class = VitsCharacters
return (
TTSTokenizer(text_cleaner, characters),new_config)
def multilingual_cleaners(text):
"""Pipeline for multilingual text"""
text = lowercase(text)
text = replace_symbols(text, lang=None)
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text).strip()
def replace_symbols(text, lang="en"):
text = text.replace(";", ",")
text = text.replace("-", " ") if lang != "ca" else text.replace("-", "")
text = text.replace(":", ",")
if lang == "en":
text = text.replace("&", " and ")
elif lang == "fr":
text = text.replace("&", " et ")
elif lang == "pt":
text = text.replace("&", " e ")
elif lang == "ca":
text = text.replace("&", " i ")
text = text.replace("'", "")
return text
def remove_aux_symbols(text):
text = re.sub(r"[\<\>\(\)\[\]\"]+", "", text)
return text |