File size: 2,133 Bytes
2161edc e80d416 2161edc 9e6aa8a 2161edc 33ca565 2161edc ad57805 2161edc e80d416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
language: en
license: mit
tags:
- vision
- image-captioning
pipeline_tag: image-to-text
---
# InstructBLIP model
InstructBLIP model using [Flan-T5-xl](https://huggingface.co/google/flan-t5-xl) as language model. InstructBLIP was introduced in the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Dai et al.
Disclaimer: The team releasing InstructBLIP did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
InstructBLIP is a visual instruction tuned version of [BLIP-2](https://huggingface.co/docs/transformers/main/model_doc/blip-2). Refer to the paper for details.
![InstructBLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/instructblip_architecture.jpg)
## Intended uses & limitations
Usage is as follows:
```
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
import torch
from PIL import Image
import requests
model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-flan-t5-xl")
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "What is unusual about this image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
do_sample=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
temperature=1,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
print(generated_text)
```
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/instructblip). |