zuxin-llm commited on
Commit
77048f9
·
verified ·
1 Parent(s): 59699eb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -9
README.md CHANGED
@@ -5,9 +5,15 @@ license: cc-by-nc-4.0
5
  <p align="center">
6
  <img width="300px" alt="xLAM" src="https://huggingface.co/Salesforce/xLAM-v0.1-r/resolve/main/xlam-no-background.png">
7
  </p>
8
- <p align="center"><a href="https://apigen-pipeline.github.io/">[🏠Homepage]</a> | <a href="https://coder.deepseek.com/">[📄 Paper]</a> | <a href="https://coder.deepseek.com/">[📚 Dataset]</a></p>
 
 
 
 
 
9
  <hr>
10
 
 
11
  Welcome to the xLAM model family! [Large Action Models (LAMs)](https://blog.salesforceairesearch.com/large-action-models/) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.
12
 
13
  ## Table of Contents
@@ -37,7 +43,7 @@ For more details, check our [paper](https://arxiv.org/abs/2406.18518).
37
 
38
  ## Repository Overview
39
 
40
- This repository is focused on our tiny `xLAM-1b-fc-r` model, which is optimized for function-calling and can be easily deployed on personal devices.
41
 
42
  <div align="center">
43
  <img src="https://github.com/apigen-pipeline/apigen-pipeline.github.io/blob/main/img/function-call-overview.png?raw=true"
@@ -46,8 +52,8 @@ alt="drawing" width="620"/>
46
 
47
  Function-calling, or tool use, is one of the key capabilities for AI agents. It requires the model not only understand and generate human-like text but also to execute functional API calls based on natural language instructions. This extends the utility of LLMs beyond simple conversation tasks to dynamic interactions with a variety of digital services and applications, such as retrieving weather information, managing social media platforms, and handling financial services.
48
 
49
- The instructions will guide you through the setup, usage, and integration of `xLAM-1b-fc-r` with HuggingFace and vLLM.
50
- We will first introduce the basic usage, and then walk through the provided tutorial and example scripts.
51
 
52
  ### Framework Versions
53
 
@@ -76,7 +82,7 @@ See our [paper](https://arxiv.org/abs/2406.18518) for more detailed analysis.
76
 
77
  ### Basic Usage with Huggingface
78
 
79
- To use the `xLAM-1b-fc-r` model from Huggingface, please first install the `transformers` library:
80
  ```bash
81
  pip install transformers>=4.41.0
82
  ```
@@ -92,7 +98,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
92
 
93
  torch.random.manual_seed(0)
94
 
95
- model_name = "Salesforce/xLAM-1b-fc-r"
96
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
97
  tokenizer = AutoTokenizer.from_pretrained(model_name)
98
 
@@ -209,7 +215,7 @@ We provide example scripts to deploy our model with `vllm` and run inferences. F
209
  pip install vllm openai argparse jinja2
210
  ```
211
 
212
- The example scripts are located in the `examples` folder.
213
 
214
  #### 1. Test Prompt Template
215
 
@@ -263,7 +269,7 @@ These resources provide a robust foundation for integrating xLAM models into you
263
 
264
  ## License
265
 
266
- `xLAM-1b-fc-r` is distributed under the CC-BY-NC-4.0 license, with additional terms specified in the [Deepseek license](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL).
267
 
268
  ## Citation
269
 
@@ -275,4 +281,4 @@ If you find this repo helpful, please cite our paper:
275
  journal={arXiv preprint arXiv:2406.18518},
276
  year={2024}
277
  }
278
- ```
 
5
  <p align="center">
6
  <img width="300px" alt="xLAM" src="https://huggingface.co/Salesforce/xLAM-v0.1-r/resolve/main/xlam-no-background.png">
7
  </p>
8
+ <p align="center">
9
+ <a href="https://apigen-pipeline.github.io/">[Homepage]</a> |
10
+ <a href="https://coder.deepseek.com/">[Paper]</a> |
11
+ <a href="https://coder.deepseek.com/">[Dataset]</a> |
12
+ <a href="https://github.com/SalesforceAIResearch/xLAM">[Github]</a>
13
+ </p>
14
  <hr>
15
 
16
+
17
  Welcome to the xLAM model family! [Large Action Models (LAMs)](https://blog.salesforceairesearch.com/large-action-models/) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.
18
 
19
  ## Table of Contents
 
43
 
44
  ## Repository Overview
45
 
46
+ This repository is focused on our small `xLAM-7b-fc-r` model, which is optimized for function-calling and can be easily deployed on personal devices.
47
 
48
  <div align="center">
49
  <img src="https://github.com/apigen-pipeline/apigen-pipeline.github.io/blob/main/img/function-call-overview.png?raw=true"
 
52
 
53
  Function-calling, or tool use, is one of the key capabilities for AI agents. It requires the model not only understand and generate human-like text but also to execute functional API calls based on natural language instructions. This extends the utility of LLMs beyond simple conversation tasks to dynamic interactions with a variety of digital services and applications, such as retrieving weather information, managing social media platforms, and handling financial services.
54
 
55
+ The instructions will guide you through the setup, usage, and integration of `xLAM-7b-fc-r` with HuggingFace and vLLM.
56
+ We will first introduce the basic usage, and then walk through the provided tutorial and example scripts in the [examples](https://huggingface.co/Salesforce/xLAM-7b-fc-r/tree/main/examples) folder.
57
 
58
  ### Framework Versions
59
 
 
82
 
83
  ### Basic Usage with Huggingface
84
 
85
+ To use the `xLAM-7b-fc-r` model from Huggingface, please first install the `transformers` library:
86
  ```bash
87
  pip install transformers>=4.41.0
88
  ```
 
98
 
99
  torch.random.manual_seed(0)
100
 
101
+ model_name = "Salesforce/xLAM-7b-fc-r"
102
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
103
  tokenizer = AutoTokenizer.from_pretrained(model_name)
104
 
 
215
  pip install vllm openai argparse jinja2
216
  ```
217
 
218
+ The example scripts are located in the [examples](https://huggingface.co/Salesforce/xLAM-7b-fc-r/tree/main/examples) folder.
219
 
220
  #### 1. Test Prompt Template
221
 
 
269
 
270
  ## License
271
 
272
+ `xLAM-7b-fc-r` is distributed under the CC-BY-NC-4.0 license, with additional terms specified in the [Deepseek license](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL).
273
 
274
  ## Citation
275
 
 
281
  journal={arXiv preprint arXiv:2406.18518},
282
  year={2024}
283
  }
284
+ ```